Do you want to publish a course? Click here

Single Spin Asymmetry in e+p^uparrow -> e+J/psi+X

122   0   0.0 ( 0 )
 Added by Asmita Mukherjee
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We report on a recent investigation of the single spin asymmetry (SSA) in low virtuality electroproduction of $J/psi$ in color evaporation model. We show that this can be used as a probe for the still unknown gluon Sivers function.



rate research

Read More

We present estimates of transverse single-spin asymmetry in prompt photon production in the scattering of low virtuality photons off a polarized proton target and discuss the possibility of using this as a probe to get information about the gluon Sivers function (GSF). Using a generalized parton model (GPM) framework, we estimate the asymmetries at electron-ion collider energy ($sqrt{s}$ =140 GeV) taking into account both direct and resolved photon processes and find that the dominant contribution, up to $10%$, comes from quark Sivers function (QSF) while the contribution from GSF is found to be up to $2%$. However, upon taking into account the effects of the process-dependent initial and final state interactions through the color-gauge invariant generalized parton model approach we find that the situation is significantly changed, with near zero contributions from the QSFs and up to a $1%$ level contribution from the textit{f}-type GSF. Our results indicate that this process may be useful for distinguishing between GPM and color-gauge invariant generalized parton models and can be used as a good probe of textit{f}-type GSF.
We present a study of transverse single-spin asymmetries (SSAs) in $p^uparrow pto J/psi,X$ and $p^uparrow pto D X$ within the framework of the generalized parton model (GPM), which includes both spin and transverse momentum effects, and show how they can provide useful information on the still almost unknown gluon Sivers function. Moreover, by adopting a modified version of this model, named color gauge invariant (CGI) GPM, we analyze the impact of the initial- and final-state interactions on our predictions. As a consequence, we find that these two processes are sensitive to different gluon Sivers functions, which can be expressed as linear combinations of two distinct, universal gluon distributions. We therefore define proper observables which could allow for a separate extraction of these two independent Sivers functions. At the same time, we show how it would be possible to discriminate between the GPM and the CGI-GPM approaches by comparing the corresponding estimates of SSAs with present and future experimental results at RHIC.
We estimate transverse single spin asymmetry (TSSA) in electroproduction of $J/psi$ for J-Lab and EIC energies. We present estimates of TSSAs in $J/psi$ production within generalized parton model (GPM) using recent parametrizations of gluon Sivers function (GSF) and compare the results obtained using color singlet model (CSM) with those obtained using color evaporation model (CEM) of quarkonium production.
73 - S. Dulat , K. Hagiwara , 2004
We study the possibility of the scalar charmonium and glueball mixing in $e^+ e^-$ annihilation at $sqrt{s}=10.6$ GeV. The effects can be used to explain the unexpected large cross section ($12pm 4$ fb) and the anomalous angular distribution ($alpha= -1.1^{+0.8}_{-0.6}$) of the exclusive $e^+e^-to J/psichi_{c0}$ process observed by Belle experiments at KEKB. We calculate the helicity amplitudes for the process $e^+ e^- to J/psi H(0^{++})$ in NRQCD, where $H(0^{++})$ is the mixed state. We present a detailed analysis on the total cross section and various angular asymmetries which could be useful to reveal the existence of the scalar glueball state.
We calculate the transverse single-spin asymmetry (SSA) for $J/psi$ production in proton-proton collisions, within non-relativistic QCD, employing the transverse momentum dependent, generalized parton model, which includes both spin and intrinsic motion effects. In particular, we study the role of the color octet mechanism in accessing the gluon Sivers function. In doing that, we also show, within this approach, how the singularities coming from color octet terms in the low-$P_T$ region can be handled, leading to finite cross sections. Predictions for both unpolarized cross sections and SSAs are given and compared against PHENIX data. Estimates for LHCb in the fixed target mode are also presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا