Do you want to publish a course? Click here

Higgs Mode and Magnon Interactions in 2D Quantum Antiferromagnets from Raman Scattering

336   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a theory for Raman scattering on 2D quantum antiferromagnets. The microscopic Fleury-Loudon Hamiltonian is expressed in terms of an effective $O(3)$ - model. Well within the Neel ordered phase, the Raman spectrum contains a two-magnon and a two-Higgs contribution, which are calculated diagramatically. The vertex functions for both the Higgs and magnon contributions are determined from a numerical solution of the corresponding Bethe-Salpeter equation. Due to the momentum dependence of the Raman vertex in the relevant $B_{1g}+E_{2g}$ symmetry, the contribution from the Higgs mode is strongly suppressed. Except for intermediate values of the Higgs mass, it does not show up as separate peak in the spectrum but gives rise to a broad continuum above the dominant contribution from two-magnon excitations. The latter give rise to a broad, asymmetric peak at $omegasimeq 2.44, J$, which is a result of magnon-magnon interactions mediated by the Higgs mode. The full Raman spectrum is determined completely by the antiferromagnetic exchange coupling $J$ and a dimensionless Higgs mass. Experimental Raman spectra of undoped cuprates turn out to be in very good agreement with the theory only with inclusion of the Higgs contribution. They thus provide a clear signature of the presence of a Higgs mode in spin one-half 2D quantum antiferromagnets.



rate research

Read More

We have used Raman scattering to investigate the magnetic excitations and lattice dynamics in the prototypical spin-orbit Mott insulators Sr2IrO4 and Sr3Ir2O7. Both compounds exhibit pronounced two-magnon Raman scattering features with different energies, lineshapes, and temperature dependencies, which in part reflect the different influence of long-range frustrating exchange interactions. Additionally, we find strong Fano asymmetries in the lineshapes of low-energy phonon modes in both compounds, which disappear upon cooling below the antiferromagnetic ordering temperatures. These unusual phonon anomalies indicate that the spin-orbit coupling in Mott-insulating iridates is not sufficiently strong to quench the orbital dynamics in the paramagnetic state.
We present and analyze Raman spectra of the Mott insulator Ca$_2$RuO$_4$, whose quasi-two-dimensional antiferromagnetic order has been described as a condensate of low-lying spin-orbit excitons with angular momentum $J_{eff}=1$. In the $A_g$ polarization geometry, the amplitude (Higgs) mode of the spin-orbit condensate is directly probed in the scalar channel, thus avoiding infrared-singular magnon contributions. In the $B_{1g}$ geometry, we observe a single-magnon peak as well as two-magnon and two-Higgs excitations. Model calculations using exact diagonalization quantitatively agree with the observations. Together with recent neutron scattering data, our study provides strong evidence for excitonic magnetism in Ca$_2$RuO$_4$ and points out new perspectives for research on the Higgs mode in two dimensions.
Synthetic antiferromagnet, comprised of two ferromagnetic layers separated by a non-magnetic layer, possesses two uniform precession resonance modes: in-phase acoustic mode and out-of-phase optic mode. In this work, we theoretically and numerically demonstrated the strong coupling between acoustic and optic magnon modes. The strong coupling is attributed to the symmetry breaking of the system, which can be realized by tilting the bias field or constructing an asymmetrical synthetic antiferromagnet. It is found that the coupling strength can be highly adjusted by tuning the tilting angle of bias field, the magnitude of antiferromagnetic interlayer exchange coupling, and the thicknesses of ferromagnetic layers. Furthermore, the coupling between acoustic and optic magnon modes can even reach the ultrastrong coupling regime. Our findings show high promise for investigating quantum phenomenon with a magnonic platform.
(Sr$_{2}$,Ba$_{2}$)Cu$_{3}$O$_{4}$Cl$_{2}$ are antiferromagnetic insulators which are akin to the parent compounds of the cuprate superconductors but with two distinct magnetic ordering temperatures related to two magnetic Cu$_{I}$ and Cu$_{II}$ spin sublattices. Here we present a study of these materials by means of Raman spectroscopy. Following the temperature and polarization dependence of the data we readily identify two distinct features at around 3000 cm$^{-1}$ and 300 cm$^{-1}$ that are related to two-magnon scattering from the two sublattices. The estimated spin-exchange coupling constants for the Cu$_{I}$ and Cu$_{II}$ sublattices are found to be J$_{I}sim$139-143(132-136) meV and J$_{II}sim$14(11) meV for Sr(Ba) compounds. Moreover, we observe modes at around 480 and 445 cm$^{-1}$ for the Sr and Ba containing samples respectively, that disappears at the ordering temperature of the Cu$_{II}$. We argue that this modes may also be of magnetic origin and possibly related to interband transitions between the Cu$_{I}$-Cu$_{II}$ sublattices.
We study spin-wave interactions in quantum antiferromagnets by expressing the usual magnon annihilation and creation operators in terms of Hermitian field operators representing transverse staggered and ferromagnetic spin fluctuations. In this parameterization, which was anticipated by Anderson in 1952, the two-body interaction vertex between staggered spin fluctuations vanishes at long wavelengths. We derive a new effective action for the staggered fluctuations only by tracing out the ferromagnetic fluctuations. To one loop order, the renormalization group flow agrees with the nonlinear-$sigma$-model approach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا