Do you want to publish a course? Click here

Persistent semi-metal-like nature of epitaxial perovskite CaIrO3 thin films

126   0   0.0 ( 0 )
 Added by Abhijit Biswas
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Strong spin-orbit coupled 5d transition metal based ABO3 oxides, especially iridates, allow tuning parameters in the phase diagram and may demonstrate important functionalities, for example, by means of strain effects and symmetry-breaking, because of the interplay between the Coulomb interactions and strong spin-orbit coupling. Here, we have epitaxially stabilized high quality thin films of perovskite (Pv) CaIrO3. Film on the best lattice-matched substrate shows semi-metal-like characteristics. Intriguingly, imposing tensile or compressive strain on the film by altering the underlying lattice-mismatched substrates still maintains semi-metallicity with minute modification of the effective correlation as tensile (compressive) strain results in tiny increases (decreases) of the electronic bandwidth. In addition, magnetoresistance remains positive with a quadratic field dependence. This persistent semi-metal-like nature of Pv-CaIrO3 thin films with minute changes in the effective correlation by strain may provide new wisdom into strong spin-orbit coupled 5d based oxide physics.



rate research

Read More

176 - Jian Liu , M. Kareev , B. Gray 2010
We have synthesized epitaxial NdNiO$_{3}$ ultra-thin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO$_{3}$ (001) and LaAlO$_3$ (001), respectively. A combination of X-ray diffraction, temperature dependent resistivity, and soft X-ray absorption spectroscopy has been applied to elucidate electronic and structural properties of the samples. In contrast to the bulk NdNiO$_{3}$, the metal-insulator transition under compressive strain is found to be completely quenched, while the transition remains under the tensile strain albeit modified from the bulk behavior.
High entropy oxides (HEOs) are a class of materials, containing equimolar portions of five or more transition metal and/or rare-earth elements. We report here about the layer-by-layer growth of HEO [(La$_{0.2}$Pr$_{0.2}$Nd$_{0.2}$Sm$_{0.2}$Eu$_{0.2}$)NiO$_3$] thin films on NdGaO$_3$ substrates by pulsed laser deposition. The combined characterizations with in-situ reflection high energy electron diffraction, atomic force microscopy, and X-ray diffraction affirm the single crystalline nature of the film with smooth surface morphology. The desired +3 oxidation of Ni has been confirmed by an element sensitive X-ray absorption spectroscopy measurement. Temperature dependent electrical transport measurements revealed a first order metal-insulator transition with the transition temperature very similar to the undoped NdNiO$_3$. Since both of these systems have a comparable tolerance factor, this work demonstrates that the electronic behaviors of $A$-site disordered perovskite-HEOs are primarily controlled by the average tolerance factor.
Chalcogenide perovskites have emerged as a new class of electronic materials, but fundamental properties and applications of chalcogenide perovskites remain limited by the lack of high quality epitaxial thin films. We report epitaxial thin film growth of BaZrS3, a prototypical chalcogenide, by pulsed laser deposition. X-ray diffraction studies show that the films are strongly textured out of plane and have a clear in-plane epitaxial relationship with the substrate. Electron microscopy studies confirm the presence of epitaxy for the first few layers of the film at the interface, even though away from the interface the films are polycrystalline with a large number of extended defects suggesting the potential for further improvement in growth. X-Ray reflectivity and atomic force microscopy show smooth film surfaces and interfaces between the substrate and the film. The films show strong light absorption near the band edge and photoluminescence in the visible region. The photodetector devices show fast and efficient photo response with the highest ON/OFF ratio reported for BaZrS3 films thus far. Our study opens up opportunities to realize epitaxial thin films, heterostructures, and superlattices of chalcogenide perovskites to probe fundamental physical phenomena and the resultant electronic and photonic device technologies.
142 - K.H.L Zhang , Y. Du , P. V. Sushko 2015
We have investigated the evolution of the electronic properties of La1-xSrxCrO3 (for the full range of x) epitaxial films deposited by molecular beam epitaxy (MBE) using x-ray diffraction, x-ray photoemission spectroscopy, Rutherford backscattering spectrometry, x-ray absorption spectroscopy, electrical transport, and ab initio modeling. LaCrO3 is an antiferromagnetic insulator whereas SrCrO3 is a metal. Substituting Sr2+ for La3+ in LaCrO3 effectively dopes holes into the top of valence band, leading to Cr4+ (3d2) local electron configurations. Core-level and valence-band features monotonically shift to lower binding energy with increasing x, indicating downward movement of the Fermi level toward the valence band maximum. The material becomes a p-type semiconductor at lower doping levels and an insulator-to-metal transition is observed at x greater than or equal to 0.65, but only when the films are deposited with in-plane compression via lattice-mismatched heteroepitaxy. Valence band x-ray photoemission spectroscopy reveals diminution of electronic state density at the Cr 3d t2g-derived top of the valence band while O K-edge x-ray absorption spectroscopy shows the development of a new unoccupied state above the Fermi level as holes are doped into LaCrO3. The evolution of these bands with Sr concentration is accurately captured using density functional theory with a Hubbard U correction of 3.0 eV (DFT + U). Resistivity data in the semiconducting regime (x less than or equal to 0.50) do not fit perfectly well to either a polaron hopping or band conduction model, but are best interpreted in terms of a hybrid model. The activation energies extracted from these fits are well reproduced by DFT + U.
Electron-boson interaction is fundamental to a thorough understanding of various exotic properties emerging in many-body physics. In photoemission spectroscopy, photoelectron emission due to photon absorption would trigger diverse collective excitations in solids, including the emergence of phonons, magnons, electron-hole pairs, and plasmons, which naturally provides a reliable pathway to study electron-boson couplings. While fingerprints of electron-phonon/-magnon interactions in this state-of-the-art technique have been well investigated, much less is known about electron-plasmon coupling, and direct observation of the band renormalization solely due to electron-plasmon interactions is extremely challenging. Here by utilizing integrated oxide molecular-beam epitaxy and angle-resolved photoemission spectroscopy, we discover the long sought-after pure electron-plasmon coupling-induced low-lying plasmonic-polaron replica bands in epitaxial semimetallic SrIrO$_3$ films, in which the characteristic low carrier concentration and narrow bandwidth combine to provide a unique platform where the electron-plasmon interaction can be investigated kinematically in photoemission spectroscopy. This finding enriches the forms of electron band normalization on collective modes in solids and demonstrates that, to obtain a complete understanding of the quasiparticle dynamics in 5d electron systems, the electron-plasmon interaction should be considered on equal footing with the acknowledged electron-electron interaction and spin-orbit coupling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا