Do you want to publish a course? Click here

Carter Subgroups, Amalgams, Simple Groups, and the Zp*-theorem

255   0   0.0 ( 0 )
 Added by Geoffrey Robinson
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We consider an amalgam of groups constructed from fusion systems for different odd primes p and q. This amalgam contains a self-normalizing cyclic subgroup of order pq and isolated elements of order p and q.



rate research

Read More

Motivated in part by representation theoretic questions, we prove that if G is a finite quasi-simple group, then there exists an elementary abelian subgroup of G that intersects every conjugacy class of involutions of G.
We announce various results concerning the structure of compactly generated simple locally compact groups. We introduce a local invariant, called the structure lattice, which consists of commensurability classes of compact subgroups with open normaliser, and show that its properties reflect the global structure of the ambient group.
We give explicit necessary and sufficient conditions for the abstract commensurability of certain families of 1-ended, hyperbolic groups, namely right-angled Coxeter groups defined by generalized theta-graphs and cycles of generalized theta-graphs, and geometric amalgams of free groups whose JSJ graphs are trees of diameter at most 4. We also show that if a geometric amalgam of free groups has JSJ graph a tree, then it is commensurable to a right-angled Coxeter group, and give an example of a geometric amalgam of free groups which is not quasi-isometric (hence not commensurable) to any group which is finitely generated by torsion elements. Our proofs involve a new geometric realization of the right-angled Coxeter groups we consider, such that covers corresponding to torsion-free, finite-index subgroups are surface amalgams.
We prove that a uniform pro-p group with no nonabelian free subgroups has a normal series with torsion-free abelian factors. We discuss this in relation to unique product groups. We also consider generalizations of Hantzsche-Wendt groups.
89 - Gareth A. Jones 2018
In 1933 B.~H.~Neumann constructed uncountably many subgroups of ${rm SL}_2(mathbb Z)$ which act regularly on the primitive elements of $mathbb Z^2$. As pointed out by Magnus, their images in the modular group ${rm PSL}_2(mathbb Z)cong C_3*C_2$ are maximal nonparabolic subgroups, that is, maximal with respect to containing no parabolic elements. We strengthen and extend this result by giving a simple construction using planar maps to show that for all integers $pge 3$, $qge 2$ the triangle group $Gamma=Delta(p,q,infty)cong C_p*C_q$ has uncountably many conjugacy classes of nonparabolic maximal subgroups. We also extend results of Tretkoff and of Brenner and Lyndon for the modular group by constructing uncountably many conjugacy classes of such subgroups of $Gamma$ which do not arise from Neumanns original method. These maximal subgroups are all generated by elliptic elements, of finite order, but a similar construction yields uncountably many conjugacy classes of torsion-free maximal subgroups of the Hecke groups $C_p*C_2$ for odd $pge 3$. Finally, an adaptation of work of Conder yields uncountably many conjugacy classes of maximal subgroups of $Delta(2,3,r)$ for all $rge 7$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا