Do you want to publish a course? Click here

Near-field enhanced optical tweezers utilizing femtosecond-laser nanostructured substrates

168   0   0.0 ( 0 )
 Added by Domna Kotsifaki G.
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present experimental evidence of plasmonic-enhanced optical tweezers, of polystyrene beads in deionized water in the vicinity of metal-coated nanostructures. The optical tweezers operate with a continuous wave (CW) near-infrared laser. We employ a Cu/Au bilayer that significantly improves dissipation of heat generated by the trapping laser beam and avoid de-trapping from heat convection currents. We investigate the improvement of the optical trapping force, the effective trapping quality factor, and observe an exponential distance dependence of the trapping force from the nanostructures, expected from the evanescent plasmon field.



rate research

Read More

A setup is proposed to enhance tracking of very small particles, by using optical tweezers embedded within a Sagnac interferometer. The achievable signal-to-noise ratio is shown to be enhanced over that for a standard optical tweezers setup. The enhancement factor increases asymptotically as the interferometer visibility approaches 100%, but is capped at a maximum given by the ratio of the trapping field intensity to the detector saturation threshold. For an achievable visibility of 99%, the signal-to-noise ratio is enhanced by a factor of 200, and the minimum trackable particle size is 2.4 times smaller than without the interferometer.
Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applications in biological diagnostics. In order to adopt plasmonic optical tweezers in real-world applications, it is essential to develop large-scale fabrication processes without compromising the trapping efficiency. Here, we develop a novel platform for continuous wave (CW) and femtosecond plasmonic optical tweezers, based on gold-coated black silicon. In contrast with traditional lithographic methods, the fabrication method relies on simple, single-step, maskless tabletop laser processing of silicon in water that facilitates scalability. Gold-coated black silicon supports repeatable trapping efficiencies comparable to the highest ones reported to date. From a more fundamental aspect, a plasmon-mediated efficiency enhancement is a resonant effect, and therefore, dependent on the wavelength of the trapping beam. Surprisingly, a wavelength characterization of plasmon-enhanced trapping efficiencies has evaded the literature. Here, we exploit the repeatability of the recorded trapping efficiency, offered by the gold-coated black silicon platform, and perform a wavelength-dependent characterization of the trapping process, revealing the resonant character of the trapping efficiency maxima. Gold-coated black silicon is a promising platform for large-scale parallel trapping applications that will broaden the range of optical manipulation in nanoengineering, biology, and the study of collective biophotonic effects.
It is very challenging to achieve near perfect absorption/emission that is both broadband and omnidirectional while utilizing a scalable fabrication process. Femtosecond laser surface processing is an emerging low-cost and large-scale manufacturing technique used to directly and permanently modify the surface properties of a material. The versatility of this technique to produce tailored surface properties has resulted in a rapidly growing number of applications. Here, we demonstrate near perfect, broadband, omnidirectional emissivity from aluminum surfaces by tuning the laser surface processing parameters including fluence, pulse count, and the ambient gas. Full-wave simulations and experimental results prove that the obtained increase in emissivity is mainly a result of two distinct features produced by femtosecond laser surface processing: the introduction of microscale surface features and the thick oxide layer. This technique leads to functionalized metallic surfaces that are ideal for emerging applications, such as passive radiative cooling and thermal management of spacecraft.
A coherent terahertz needle radiation emission mechanism is proposed. This mechanism can be realized in the experiments on femtosecond laser pulses interacting with surface of nanostructured ferromagnetic metal film. The proposed mechanism is based on exciting of coupled coherent phonon-magnon modes on a nanostructured metal surface by laser femtosecond pulse. The value of the Poynting vector for the terahertz radiation is estimated.
We report a stable double optical spring effect in an optical cavity pumped with a single optical field that arises as a result of birefringence. One end of the cavity is formed by a multilayer Al$_{0.92}$Ga$_{0.08}$As/GaAs stack supported by a microfabricated cantilever, with a natural mode frequency of $274$ Hz. The optical spring shifts the resonance to $21$ kHz, corresponding to a suppression of low frequency vibrations by a factor of more than $10^{4}$. The stable nature of the optical trap allows the cavity to be operated without any external feedback and with only a single optical field incident.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا