Do you want to publish a course? Click here

A derivation of two transformation formulas contiguous to that of Kummers second theorem via a differential equation approach

130   0   0.0 ( 0 )
 Added by Richard Paris
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The purpose of this note is to provide an alternative proof of two transformation formulas contiguous to that of Kummers second transformation for the confluent hypergeometric function ${}_1F_1$ using a differential equation approach.



rate research

Read More

50 - I. Bailleul 2018
We give an elementary proof that Davies definition of a solution to a rough differential equation and the notion of solution given by Bailleul in (Flows driven by rough paths) coincide. This provides an alternative point on view on the deep algebraic insights of Cass and Weidner in their work (Tree algebras over topological vector spaces in rough path theory).
105 - C. Baumgarten 2019
We give an exceptionally short derivation of Schroedingers equation by replacing the idealization of a point particle by a density distribution.
A silting theorem was established by Buan and Zhou as a generalisation of the classical tilting theorem of Brenner and Butler. In this paper, we give an alternative proof of the theorem by using differential graded algebras.
249 - Arjun K. Rathie , Insuk Kim , 2020
In this note, we aim to provide generalizations of (i) Knuths old sum (or Reed Dawson identity) and (ii) Riordans identity using a hypergeometric series approach.
84 - N.D. Cong , T.S. Doan , H.T. Tuan 2016
We give a necessary and sufficient condition for a system of linear inhomogeneous fractional differential equations to have at least one bounded solution. We also obtain an explicit description for the set of all bounded (or decay) solutions for these systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا