Do you want to publish a course? Click here

The transverse momentum dependence of charged kaon Bose-Einstein correlations in the SELEX experiment

136   0   0.0 ( 0 )
 Added by Grigory Nigmatkulov
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We report on the measurement of the one-dimensional charged kaon correlation functions using 600~GeV/{it c} $Sigma^-$, $pi^-$ and 540~GeV/{it c} $p$ beams from the SELEX~(E781) experiment at the Fermilab Tevatron. $K^{pm}K^{pm}$ correlation functions are studied for three transverse pair momentum, $k_T$, ranges and parameterized by a Gaussian form. The emission source radii, $R$, and the correlation strength, $lambda$, are extracted. The analysis shows a decrease of the source radii with increasing kaon transverse pair momentum for all beam types.



rate research

Read More

139 - Wesley J. Metzger 2014
Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z decays are analyzed for both two- and three-jet events. A parametrization suggested by the tau-model is used to investigate the dependence of the Bose-Einstein correlation function on track multiplicity, number of jets, and transverse momentum.
A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality $Q^{2}>1$ (GeV/$c$)$^2$, invariant mass of the hadronic system $W > 5$ GeV/$c^2$, Bjorken scaling variable in the range $0.003 < x < 0.4$, fraction of the virtual photon energy carried by the hadron in the range $0.2 < z < 0.8$, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/$c)^2 < P_{rm{hT}}^{2} < 3$ (GeV/$c$)$^2$. The multiplicities are presented as a function of $P_{rm{hT}}^{2}$ in three-dimensional bins of $x$, $Q^2$, $z$ and compared to previous semi-inclusive measurements. We explore the small-$P_{rm{hT}}^{2}$ region, i.e. $P_{rm{hT}}^{2} < 1$ (GeV/$c$)$^2$, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger $P_{rm{hT}}^{2}$, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small $P_{rm{hT}}^{2}$ to study the dependence of the average transverse momentum $langle P_{rm{hT}}^{2}rangle$ on $x$, $Q^2$ and $z$. The power-law behaviour of the multiplicities at large $P_{rm{hT}}^{2}$ is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.
The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 +/- 1.7 MeV/c^2, which is within 1.4 sigma of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.
We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The evolution of the spectra for transverse momenta p_T from 0.25 to 5GeV/c is studied as a function of collision centrality over a range from 65 to 344 participating nucleons. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at the highest p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.
68 - O.V.Utyuz , G.Wilk , Z.Wlodarczyk 2005
We describe an attempt to numerically model Bose-Einstein correlations (BEC) from within, i.e., by using them as the most fundamental ingredient of a Monte Carlo event generator (MC) rather than considering them as a kind of (more or less important, depending on the actual situation) afterburner, which inevitably changes the original physical content of the MC code used to model multiparticle production process.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا