Do you want to publish a course? Click here

Quenched Voronoi percolation

171   0   0.0 ( 0 )
 Added by Robert Morris
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We prove that the probability of crossing a large square in quenched Voronoi percolation converges to 1/2 at criticality, confirming a conjecture of Benjamini, Kalai and Schramm from 1999. The main new tools are a quenched version of the box-crossing property for Voronoi percolation at criticality, and an Efron-Stein type bound on the variance of the probability of the crossing event in terms of the sum of the squares of the influences. As a corollary of the proof, we moreover obtain that the quenched crossing event at criticality is almost surely noise sensitive.



rate research

Read More

Using the randomized algorithm method developed by Duminil-Copin, Raoufi, Tassion (2019b) we exhibit sharp phase transition for the confetti percolation model. This provides an alternate proof that the critical parameter for percolation in this model is $1/2$ when the underlying shapes for the distinct colours arise from the same distribution and extends the work of Hirsch (2015) and M{u}ller (2016). In addition we study the covered area fraction for this model, which is akin to the covered volume fraction in continuum percolation. Modulo a certain `transitivity condition this study allows us to calculate exact critical parameter for percolation when the underlying shapes for different colours may be of different sizes. Similar results are also obtained for the Poisson Voronoi percolation model when different coloured points have different growth speeds.
We consider random walk on dynamical percolation on the discrete torus $mathbb{Z}_n^d$. In previous work, mixing times of this process for $p<p_c(mathbb{Z}^d)$ were obtained in the annealed setting where one averages over the dynamical percolation environment. Here we study exit times in the quenched setting, where we condition on a typical dynamical percolation environment. We obtain an upper bound for all $p$ which for $p<p_c$ matches the known lower bound.
We prove that the Poisson Boolean model, also known as the Gilbert disc model, is noise sensitive at criticality. This is the first such result for a Continuum Percolation model, and the first for which the critical probability p_c e 1/2. Our proof uses a version of the Benjamini-Kalai-Schramm Theorem for biased product measures. A quantitative version of this result was recently proved by Keller and Kindler. We give a simple deduction of the non-quantitative result from the unbiased version. We also develop a quite general method of approximating Continuum Percolation models by discrete models with p_c bounded away from zero; this method is based on an extremal result on non-uniform hypergraphs.
A bootstrap percolation process on a graph G is an infection process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round every uninfected node which has at least r infected neighbours becomes infected and remains so forever. The parameter r > 1 is fixed. We consider this process in the case where the underlying graph is an inhomogeneous random graph whose kernel is of rank 1. Assuming that initially every vertex is infected independently with probability p > 0, we provide a law of large numbers for the number of vertices that will have been infected by the end of the process. We also focus on a special case of such random graphs which exhibit a power-law degree distribution with exponent in (2,3). The first two authors have shown the existence of a critical function a_c(n) such that a_c(n)=o(n) with the following property. Let n be the number of vertices of the underlying random graph and let a(n) be the number of the vertices that are initially infected. Assume that a set of a(n) vertices is chosen randomly and becomes externally infected. If a(n) << a_c(n), then the process does not evolve at all, with high probability as n grows, whereas if a(n)>> a_c(n), then with high probability the final set of infected vertices is linear. Using the techniques of the previous theorem, we give the precise asymptotic fraction of vertices which will be eventually infected when a(n) >> a_c (n) but a(n) = o(n). Note that this corresponds to the case where p approaches 0.
We study the critical probability for the metastable phase transition of the two-dimensional anisotropic bootstrap percolation model with $(1,2)$-neighbourhood and threshold $r = 3$. The first order asymptotics for the critical probability were recently determined by the first and second authors. Here we determine the following sharp second and third order asymptotics: [ p_cbig( [L]^2,mathcal{N}_{(1,2)},3 big) ; = ; frac{(log log L)^2}{12log L} , - , frac{log log L , log log log L}{ 3log L} + frac{left(log frac{9}{2} + 1 pm o(1) right)log log L}{6log L}. ] We note that the second and third order terms are so large that the first order asymptotics fail to approximate $p_c$ even for lattices of size well beyond $10^{10^{1000}}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا