We consider random walk on dynamical percolation on the discrete torus $mathbb{Z}_n^d$. In previous work, mixing times of this process for $p<p_c(mathbb{Z}^d)$ were obtained in the annealed setting where one averages over the dynamical percolation environment. Here we study exit times in the quenched setting, where we condition on a typical dynamical percolation environment. We obtain an upper bound for all $p$ which for $p<p_c$ matches the known lower bound.
We consider dynamical percolation on the $d$-dimensional discrete torus of side length $n$, $mathbb{Z}_n^d$, where each edge refreshes its status at rate $mu=mu_nle 1/2$ to be open with probability $p$. We study random walk on the torus, where the walker moves at rate $1/(2d)$ along each open edge. In earlier work of two of the authors with A. Stauffer, it was shown that in the subcritical case $p<p_c(mathbb{Z}^d)$, the (annealed) mixing time of the walk is $Theta(n^2/mu)$, and it was conjectured that in the supercritical case $p>p_c(mathbb{Z}^d)$, the mixing time is $Theta(n^2+1/mu)$; here the implied constants depend only on $d$ and $p$. We prove a quenched (and hence annealed) version of this conjecture up to a poly-logarithmic factor under the assumption $theta(p)>1/2$. Our proof is based on percolation results (e.g., the Grimmett-Marstrand Theorem) and an analysis of the volume-biased evolving set process; the key point is that typically, the evolving set has a substantial intersection with the giant percolation cluster at many times. This allows us to use precise isoperimetric properties of the cluster (due to G. Pete) to infer rapid growth of the evolving set, which in turn yields the upper bound on the mixing time.
By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corrections ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.
Following similar analysis to that in Lacoin (PTRF 159, 777-808, 2014), we can show that the quenched critical point for self-avoiding walk on random conductors on the d-dimensional integer lattice is almost surely a constant, which does not depend on the location of the reference point. We provide its upper and lower bounds that are valid for all dimensions.
In order to approximate the exit time of a one-dimensional diffusion process, we propose an algorithm based on a random walk. Such an algorithm so-called Walk on Moving Spheres was already introduced in the Brownian context. The aim is therefore to generalize this numerical approach to the Ornstein-Uhlenbeck process and to describe the efficiency of the method.
We revisit an unpublished paper of Vervoort (2002) on the once reinforced random walk, and prove that this process is recurrent on any graph of the form $mathbb{Z}times Gamma$, with $Gamma$ a finite graph, for sufficiently large reinforcement parameter. We also obtain a shape theorem for the set of visited sites, and show that the fluctuations around this shape are of polynomial order. The proof involves sharp general estimates on the time spent on subgraphs of the ambiant graph which might be of independent interest.