Do you want to publish a course? Click here

Quasielastic electron- and neutrino-nucleus scattering in a continuum random phase approximation approach

130   0   0.0 ( 0 )
 Added by Vishvas Pandey
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We present a continuum random phase approximation approach to study electron- and neutrino-nucleus scattering cross sections, in the kinematic region where quasielastic scattering is the dominant process. We show the validity of the formalism by confronting inclusive ($e,e$) cross sections with the available data. We calculate flux-folded cross sections for charged-current quasielastic antineutrino scattering off $^{12}$C and compare them with the MiniBooNE cross-section measurements. We pay special emphasis to the contribution of low-energy nuclear excitations in the signal of accelerator-based neutrino-oscillation experiments.



rate research

Read More

We present a detailed study of a continuum random phase approximation approach to quasielastic electron-nucleus and neutrino-nucleus scattering. The formalism is validated by confronting ($e,e$) cross-section predictions with electron scattering data for the nuclear targets $^{12}$C, $^{16}$O, and $^{40}$Ca, in the kinematic region where quasielastic scattering is expected to dominate. We examine the longitudinal and transverse contributions to $^{12}$C($e,e$) and compare them with the available data. Further, we study the $^{12}$C($ u_{mu},mu^{-}$) cross sections relevant for accelerator-based neutrino-oscillation experiments. We pay special attention to low-energy excitations which can account for non-negligible contributions in measurements, and require a beyond-Fermi-gas formalism.
We study the sensitivity of neutral-current neutrino-nucleus scattering to the strange-quark content of the axial-vector form factor of the nucleon. A model-independent formalism for this reaction is developed in terms of eight nuclear structure functions. Taking advantage of the insensitivity of the ratio of proton $( u, u p)$ to neutron $( u, u n)$ yields to distortion effects, we compute all structure functions in a relativistic plane wave impulse approximation approach. Further, by employing the notion of a bound-state nucleon propagator, closed-form, analytic expressions for all nuclear-structure functions are developed in terms of an accurately calibrated relativistic mean-field model. Using a strange-quark contribution to the axial-vector form factor of $g_{A}^{s}=-0.19$, a significant enhancement in the proton-to-neutron yields is observed relative to one with $g_{A}^{s}=0$.
66 - Giampaolo Co 2006
The Random Phase Approximation theory is used to calculate the total cross sections of electron neutrinos on $^{12}$C nucleus. The role of the excitation of the discrete spectrum is discussed. A comparison with electron scattering and muon capture data is presented. The cross section of electron neutrinos coming from muon decay at rest is calculated.
We present a model for electron- and neutrino-scattering off nucleons and nuclei focussing on the quasielastic and resonance region. The lepton-nucleon reaction is described within a relativistic formalism that includes, besides quasielastic scattering, the excitation of 13 N* and Delta resonances and a non-resonant single-pion background. Recent electron-scattering data is used for the state-of-the-art parametrizations of the vector form factors; the axial couplings are determined via PCAC and, in the case of the Delta resonance, the axial form factor is refitted using neutrino-scattering data. Scattering off nuclei is treated within the GiBUU framework that takes into account various nuclear effects: the local density approximation for the nuclear ground state, mean-field potentials and in-medium spectral functions. Results for inclusive scattering off Oxygen are presented and, in the case of electron-induced reactions, compared to experimental data and other models.
The neutral-current neutrino-nucleus scattering is calculated through the neutrino-induced knocked-out nucleon process in the quasielastic region by using a relativistic single particle model for the bound and continuum states. The incident energy range between 500 MeV and 1.0 GeV is used for the neutrino (antineutrino) scattering on ^{12}C target nucleus. The effects of the final state interaction of the knocked-out nucleon are studied not only on the cross section but also on the asymmetry due to the difference between neutrinos and antineutrinos, within a relativistic optical potential. We also investigate the sensitivity of the strange quark contents in the nucleon on the asymmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا