Do you want to publish a course? Click here

Recovery of interior eigenvalues from reduced near field data

158   0   0.0 ( 0 )
 Added by Evgeny Lakshtanov L
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider inverse obstacle and transmission scattering problems where the source of the incident waves is located on a smooth closed surface that is a boundary of a domain located outside of the obstacle/inhomogeneity of the media. The domain can be arbitrarily small but fixed.The scattered waves are measured on the same surface. An effective procedure is suggested for recovery of interior eigenvalues by these data.



rate research

Read More

We provide a purely variational proof of the existence of eigenvalues below the bottom of the essential spectrum for the Schrodinger operator with an attractive $delta$-potential supported by a star graph, i.e. by a finite union of rays emanating from the same point. In contrast to the previous works, the construction is valid without any additional assumption on the number or the relative position of the rays. The approach is used to obtain an upper bound for the lowest eigenvalue.
We consider inverse potential scattering problems where the source of the incident waves is located on a smooth closed surface outside of the inhomogeneity of the media. The scattered waves are measured on the same surface at a fixed value of the energy. We show that this data determines the bounded potential uniquely.
156 - G. Berkolaiko , T. Weyand 2012
We prove an analogue of the magnetic nodal theorem on quantum graphs: the number of zeros $phi$ of the $n$-th eigenfunction of the Schrodinger operator on a quantum graph is related to the stability of the $n$-th eigenvalue of the perturbation of the operator by magnetic potential. More precisely, we consider the $n$-th eigenvalue as a function of the magnetic perturbation and show that its Morse index at zero magnetic field is equal to $phi - (n-1)$.
We consider the Dirichlet Laplacian in a straight three dimensional waveguide with non-rotationally invariant cross section, perturbed by a twisting of small amplitude. It is well known that such a perturbation does not create eigenvalues below the essential spectrum. However, around the bottom of the spectrum, we provide a meromorphic extension of the weighted resolvent of the perturbed operator, and show the existence of exactly one resonance near this point. Moreover, we obtain the asymptotic behavior of this resonance as the size of the twisting goes to 0. We also extend the analysis to the upper eigenvalues of the transversal problem, showing that the number of resonances is bounded by the multiplicity of the eigenvalue and obtaining the corresponding asymptotic behavior
We consider the interior transmission eigenvalue (ITE) problem, which arises when scattering by inhomogeneous media is studied. The ITE problem is not self-adjoint. We show that positive ITEs are observable together with plus or minus signs that are defined by the direction of motion of the corresponding eigenvalues of the scattering matrix (when the latter approach {bf$z=1$)}. We obtain a Weyl type formula for the counting function of positive ITEs, which are taken together with ascribed signs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا