Do you want to publish a course? Click here

Pressure-tuned quantum criticality in the antiferromagnetic Kondo semi-metal CeNi$_{2-delta}$As$_2$

138   0   0.0 ( 0 )
 Added by Yongkang Luo Dr.
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi$_{2-delta}$As$_2$ ($delta$$thickapprox$0.28) as its antiferromagnetic order is tuned by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of $sim$0.032 $e^-$/f.u. in CeNi$_{2-delta}$As$_2$ leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo lattice state with decreasing temperature. The small carrier density and associated semi-metallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raise the specter of Nozi`{e}res exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.



rate research

Read More

Kondo insulators are predicted to undergo an insulator-to-metal transition under applied magnetic field, yet the extremely high fields required to date have prohibited a comprehensive investigation of the nature of this transition. Here we show that Ce3Bi4Pd3 provides an ideal platform for this investigation, owing to the unusually small magnetic field of B ~ 11 T required to overcome its Kondo insulating gap. Above Bc, we find a magnetic field-induced Fermi liquid state whose characteristic energy scale T_FL collapses near Bc in a manner indicative of a magnetic field-tuned quantum critical point. A direct connection is established with the process of Kondo singlet formation, which yields a broad maximum in the magnetic susceptibility as a function of temperature in weak magnetic fields that evolves progressively into a sharper transition at Bc as T -> 0.
We have studied the effect of pressure on the pyrochlore iridate Eu$_2$Ir$_2$O$_7$, which at ambient pressure has a thermally driven insulator to metal transition at $T_{MI}sim120$,K. As a function of pressure the insulating gap closes, apparently continuously, near $P sim 6$,GPa. However, rather than $T_{MI}$ going to zero as expected, the insulating ground state crosses over to a metallic state with a negative temperature coefficient of resistivity, calling into question the true nature of both ground states. The high temperature state also crosses over near 6 GPa, from an incoherent to a conventional metal, suggesting a connection between the high and the low temperature states.
There has been considerable interest in topological semi-metals that exhibit extreme magnetoresistance (XMR). These have included materials lacking inversion symmetry such as TaAs, as well Dirac semi-metals such as Cd3As2. However, it was reported recently that LaSb and LaBi also exhibit XMR, even though the rock-salt structure of these materials has inversion symmetry, and the band-structure calculations do not show a Dirac dispersion in the bulk. Here, we present magnetoresistance and specific heat measurements on NdSb, which is isostructural with LaSb. NdSb has an antiferromagnetic groundstate, and in analogy with the lanthanum monopnictides, is expected to be a topologically non-trivial semi-metal. We show that NdSb has an XMR of 10^4 %, even within the AFM state, illustrating that XMR can occur independently of the absence of time reversal symmetry breaking in zero magnetic field. The persistence of XMR in a magnetic system offers promise of new functionality when combining topological matter with electronic correlations. We also find that in an applied magnetic field below the Neel temperature there is a first order transition, consistent with evidence from previous neutron scattering work.
The observation of quantum criticality in diverse classes of strongly correlated electron systems has been instrumental in establishing ordering principles, discovering new phases, and identifying the relevant degrees of freedom and interactions. At focus so far have been insulators and metals. Semimetals, which are of great current interest as candidate phases with nontrivial topology, are much less explored in experiments. Here we study the Kondo semimetal CeRu$_4$Sn$_6$ by magnetic susceptibility, specific heat, and inelastic neutron scattering experiments. The power-law divergence of the magnetic Grunesien ratio reveals that, surprisingly, this compound is quantum critical without tuning. The dynamical energy over temperature scaling in the neutron response, seen throughout the Brillouin zone, as well as the temperature dependence of the static uniform susceptibility indicate that temperature is the only energy scale in the criticality. Such behavior, which has been associated with Kondo destruction quantum criticality in metallic systems, may well be generic in the semimetal setting.
BaMn$_{2}$As$_{2}$ is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the Neel temperature ($T_mathrm{N}$) and the ordered moment, suggesting that doped holes interact weakly with the Mn spin system. Powder inelastic neutron scattering measurements were performed on three different powder samples of Ba$_{1-x}$K$_{x}$Mn$_{2}$As$_{2}$ with $x=$0, 0.125 and 0.25 to study the effect of hole doping and metallization on the spin dynamics of these compounds. We compare the neutron intensities to a linear spin wave theory approximation to the $J_{1}-J_{2}-J_{c}$ Heisenberg model. Hole doping is found to introduce only minor modifications to the exchange energies and spin gap. The changes observed in the exchange constants are consistent with the small drop of $T_mathrm{N}$ with doping.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا