Do you want to publish a course? Click here

Random-field Ising model: Insight from zero-temperature simulations

153   0   0.0 ( 0 )
 Added by Nikolaos Fytas
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We enlighten some critical aspects of the three-dimensional ($d=3$) random-field Ising model from simulations performed at zero temperature. We consider two different, in terms of the field distributio



rate research

Read More

Ising Monte Carlo simulations of the random-field Ising system Fe(0.80)Zn(0.20)F2 are presented for H=10T. The specific heat critical behavior is consistent with alpha approximately 0 and the staggered magnetization with beta approximately 0.25 +- 0.03.
139 - M. Zumsande , A.K. Hartmann 2009
The random-field Ising model (RFIM), one of the basic models for quenched disorder, can be studied numerically with the help of efficient ground-state algorithms. In this study, we extend these algorithm by various methods in order to analyze low-energy excitations for the three-dimensional RFIM with Gaussian distributed disorder that appear in the form of clusters of connected spins. We analyze several properties of these clusters. Our results support the validity of the droplet-model description for the RFIM.
The phase diagram of the random field Ising model on the Bethe lattice with a symmetric dichotomous random field is closely investigated with respect to the transition between the ferromagnetic and paramagnetic regime. Refining arguments of Bleher, Ruiz and Zagrebnov [J. Stat. Phys. 93, 33 (1998)] an exact upper bound for the existence of a unique paramagnetic phase is found which considerably improves the earlier results. Several numerical estimates of transition lines between a ferromagnetic and a paramagnetic regime are presented. The obtained results do not coincide with a lower bound for the onset of ferromagnetism proposed by Bruinsma [Phys. Rev. B 30, 289 (1984)]. If the latter one proves correct this would hint to a region of coexistence of stable ferromagnetic phases and a stable paramagnetic phase.
We report a high-precision numerical estimation of the critical exponent $alpha$ of the specific heat of the random-field Ising model in four dimensions. Our result $alpha = 0.12(1)$ indicates a diverging specific-heat behavior and is consistent with the estimation coming from the modified hyperscaling relation using our estimate of $theta$ via the anomalous dimensions $eta$ and $bar{eta}$. Our analysis benefited form a high-statistics zero-temperature numerical simulation of the model for two distributions of the random fields, namely a Gaussian and Poissonian distribution, as well as recent advances in finite-size scaling and reweighting methods for disordered systems. An original estimate of the critical slowing down exponent $z$ of the maximum-flow algorithm used is also provided.
We investigate thermodynamic phase transitions of the joint presence of spin glass (SG) and random field (RF) using a random graph model that allows us to deal with the quenched disorder. Therefore, the connectivity becomes a controllable parameter in our theory, allowing us to answer what the differences are between this description and the mean-field theory i.e., the fully connected theory. We have considered the random network random field Ising model where the spin exchange interaction as well as the RF are random variables following a Gaussian distribution. The results were found within the replica symmetric (RS) approximation, whose stability is obtained using the two-replica method. This also puts our work in the context of a broader discussion, which is the RS stability as a function of the connectivity. In particular, our results show that for small connectivity there is a region at zero temperature where the RS solution remains stable above a given value of the magnetic field no matter the strength of RF. Consequently, our results show important differences with the crossover between the RF and SG regimes predicted by the fully connected theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا