No Arabic abstract
The random-field Ising model (RFIM), one of the basic models for quenched disorder, can be studied numerically with the help of efficient ground-state algorithms. In this study, we extend these algorithm by various methods in order to analyze low-energy excitations for the three-dimensional RFIM with Gaussian distributed disorder that appear in the form of clusters of connected spins. We analyze several properties of these clusters. Our results support the validity of the droplet-model description for the RFIM.
We present results on the first excited states for the random-field Ising model. These are based on an exact algorithm, with which we study the excitation energies and the excitation sizes for two- and three-dimensional random-field Ising systems with a Gaussian distribution of the random fields. Our algorithm is based on an approach of Frontera and Vives which, in some cases, does not yield the true first excited states. Using the corrected algorithm, we find that the order-disorder phase transition for three dimensions is visible via crossings of the excitations-energy curves for different system sizes, while in two-dimensions these crossings converge to zero disorder. Furthermore, we obtain in three dimensions a fractal dimension of the excitations cluster of d_s=2.42(2). We also provide analytical droplet arguments to understand the behavior of the excitation energies for small and large disorder as well as close to the critical point.
Ising Monte Carlo simulations of the random-field Ising system Fe(0.80)Zn(0.20)F2 are presented for H=10T. The specific heat critical behavior is consistent with alpha approximately 0 and the staggered magnetization with beta approximately 0.25 +- 0.03.
The phase diagram of the random field Ising model on the Bethe lattice with a symmetric dichotomous random field is closely investigated with respect to the transition between the ferromagnetic and paramagnetic regime. Refining arguments of Bleher, Ruiz and Zagrebnov [J. Stat. Phys. 93, 33 (1998)] an exact upper bound for the existence of a unique paramagnetic phase is found which considerably improves the earlier results. Several numerical estimates of transition lines between a ferromagnetic and a paramagnetic regime are presented. The obtained results do not coincide with a lower bound for the onset of ferromagnetism proposed by Bruinsma [Phys. Rev. B 30, 289 (1984)]. If the latter one proves correct this would hint to a region of coexistence of stable ferromagnetic phases and a stable paramagnetic phase.
We use a non-equilibrium simulation method to study the spin glass transition in three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity $v$ (temperature change versus time) in Monte Carlo simulations starting at a high temperature. The normally problematic critical slowing-down is not hampering this kind of approach, since the system equilibrates quickly at the initial temperature and the slowing-down is merely reflected in the dynamic scaling of the non-equilibrium order parameter with $v$ and the system size. The equilibrium limit does not have to be reached. For the dynamic exponent we obtain $z = 5.85(9)$ for bimodal couplings distribution and $z=6.00(10)$ for the Gaussian case, thus supporting universal dynamic scaling (in contrast to recent claims of non-universal behavior).
We investigate thermodynamic phase transitions of the joint presence of spin glass (SG) and random field (RF) using a random graph model that allows us to deal with the quenched disorder. Therefore, the connectivity becomes a controllable parameter in our theory, allowing us to answer what the differences are between this description and the mean-field theory i.e., the fully connected theory. We have considered the random network random field Ising model where the spin exchange interaction as well as the RF are random variables following a Gaussian distribution. The results were found within the replica symmetric (RS) approximation, whose stability is obtained using the two-replica method. This also puts our work in the context of a broader discussion, which is the RS stability as a function of the connectivity. In particular, our results show that for small connectivity there is a region at zero temperature where the RS solution remains stable above a given value of the magnetic field no matter the strength of RF. Consequently, our results show important differences with the crossover between the RF and SG regimes predicted by the fully connected theory.