We review the long term project of the ALPHA collaboration to compute in QCD the running coupling constant and quark masses at high energy scales in terms of low energy hadronic quantities. The adapted techniques required to numerically carry out the required multiscale non-perturbative calculation with our special emphasis on the control of systematic errors are summarized. The complete results in the two dynamical flavor approximation are reviewed and an outlook is given on the ongoing three flavor extension of the programme with improved target precision.
Lattice QCD has reached a mature status. State of the art lattice computations include $u,d,s$ (and even the $c$) sea quark effects, together with an estimate of electromagnetic and isospin breaking corrections for hadronic observables. This precise and first principles description of the standard model at low energies allows the determination of multiple quantities that are essential inputs for phenomenology and not accessible to perturbation theory. One of the fundamental parameters that are determined from simulations of lattice QCD is the strong coupling constant, which plays a central role in the quest for precision at the LHC. Lattice calculations currently provide its best determinations, and will play a central role in future phenomenological studies. For this reason we believe that it is timely to provide a pedagogical introduction to the lattice determinations of the strong coupling. Rather than analysing individual studies, the emphasis will be on the methodologies and the systematic errors that arise in these determinations. We hope that these notes will help lattice practitioners, and QCD phenomenologists at large, by providing a self-contained introduction to the methodology and the possible sources of systematic error. The limiting factors in the determination of the strong coupling turn out to be different from the ones that limit other lattice precision observables. We hope to collect enough information here to allow the reader to appreciate the challenges that arise in order to improve further our knowledge of a quantity that is crucial for LHC phenomenology.
We calculate the vacuum polarization functions on the lattice using the overlap fermion formulation.By matching the lattice data at large momentum scales with the perturbative expansion supplemented by Operator Product Expansion (OPE), we extract the strong coupling constant $alpha_s(mu)$ in two-flavor QCD as $Lambda^{(2)}_{overline{MS}}$ = $0.234(9)(^{+16}_{- 0})$ GeV, where the errors are statistical and systematic, respectively. In addition, from the analysis of the difference between the vector and axial-vector channels, we obtain some of the four-quark condensates.
We present results showing that the strong coupling constant measured in two-flavor full QCD with dynamical Kogut-Susskind quarks at $beta=5.7$ exhibit a 15% increase due to sea quarks over that for quenched QCD at the scale $muapprox 7$GeV . (talk at lattice93)
Recent developments in non-perturbative renormalization for lattice QCD are reviewed with a particular emphasis on RI/MOM scheme and its variants, RI/SMOM schemes. Summary of recent developments in Schroedinger functional scheme, as well as the summary of related topics are presented. Comparison of strong coupling constant and the strange quark mass from various methods are made.
The strong coupling constant is one of the fundamental parameters of the standard model of particle physics. In this review I will briefly summarise the theoretical framework, within which the strong coupling constant is defined and how it is connected to measurable observables. Then I will give an historical overview of its experimental determinations and discuss the current status and world average value. Among the many different techniques used to determine this coupling constant in the context of quantum chromodynamics, I will focus in particular on a number of measurements carried out at the Large Electron Positron Collider (LEP) and the Large Hadron Collider (LHC) at CERN.