Do you want to publish a course? Click here

Harmonic vector fields on pseudo-Riemannian manifolds

184   0   0.0 ( 0 )
 Added by Christopher Wood
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The theory of harmonic vector fields on Riemannian manifolds is generalised to pseudo-Riemannian manifolds. Harmonic conformal gradient fields on pseudo-Euclidean hyperquadrics are classified up to congruence, as are harmonic Killing fields on pseudo-Riemannian quadrics. A para-Kaehler twisted anti-isometry is used to correlate harmonic vector fields on the quadrics of neutral signature.



rate research

Read More

126 - Yibin Ren , Guilin Yang 2017
In this paper, we discuss the heat flow of a pseudo-harmonic map from a closed pseudo-Hermitian manifold to a Riemannian manifold with non-positive sectional curvature, and prove the existence of the pseudo-harmonic map which is a generalization of Eells-Sampsons existence theorem. We also discuss the uniqueness of the pseudo-harmonic representative of its homotopy class which is a generalization of Hartman theorem, provided that the target manifold has negative sectional curvature.
In this paper, we use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics on $S^3$ with ${rm Ric} = 2 F^2$, ${rm Ric}=0$ and ${rm Ric}=- 2 F^2$, respectively. This family of metrics provide an important class of Finsler metrics in dimension three, whose Ricci curvature is a constant, but the flag curvature is not.
211 - P. Gilkey , S. Nikcevic 2007
We exhibit several families of Jacobi-Videv pseudo-Riemannian manifolds which are not Einstein. We also exhibit Jacobi-Videv algebraic curvature tensors where the Ricci operator defines an almost complex structure.
231 - Yuxin Dong , Ye-Lin Ou 2015
In this paper, we derived biharmonic equations for pseudo-Riemannian submanifolds of pseudo-Riemannian manifolds which includes the biharmonic equations for submanifolds of Riemannian manifolds as a special case. As applications, we proved that a pseudo-umbilical biharmonic pseudo-Riemannian submanifold of a pseudo-Riemannian manifold has constant mean curvature, we completed the classifications of biharmonic pseudo-Riemannian hypersurfaces with at most two distinct principal curvatures, which were used to give four construction methods to produce proper biharmonic pseudo-Riemannian submanifolds from minimal submanifolds. We also made some comparison study between biharmonic hypersurfaces of Riemannian space forms and the space-like biharmonic hypersurfaces of pseudo-Riemannian space forms.
We generalize a Bernstein-type result due to Albujer and Alias, for maximal surfaces in a curved Lorentzian product 3-manifold of the form $Sigma_1times mathbb{R}$, to higher dimension and codimension. We consider $M$ a complete spacelike graphic submanifold with parallel mean curvature, defined by a map $f: Sigma_1to Sigma_2$ between two Riemannian manifolds $(Sigma_1^m, g_1)$ and $(Sigma^n_2, g_2)$ of sectional curvatures $K_1$ and $K_2$, respectively. We take on $Sigma_1times Sigma_2$ the pseudo-Riemannian product metric $g_1-g_2$. Under the curvature conditions, $mathrm{Ricci}_1 geq 0$ and $K_1geq K_2$, we prove that, if the second fundamental form of $M$ satisfies an integrability condition, then $M$ is totally geodesic, and it is a slice if $mathrm{Ricci}_1(p)>0$ at some point. For bounded $K_1$, $K_2$ and hyperbolic angle $theta$, we conclude $M$ must be maximal. If $M$ is a maximal surface and $K_1geq K_2^+$, we show $M$ is totally geodesic with no need for further assumptions. Furthermore, $M$ is a slice if at some point $pin Sigma_1$, $K_1(p)> 0$, and if $Sigma_1$ is flat and $K_2<0$ at some point $f(p)$, then the image of $f$ lies on a geodesic of $Sigma_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا