Do you want to publish a course? Click here

Transport Signatures of Fermi Surface Topology Change in BiTeI

420   0   0.0 ( 0 )
 Added by Linda Ye
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a quantum magnetotransport signature of a change in Fermi surface topology in the Rashba semiconductor BiTeI with systematic tuning of the Fermi level $E_F$. Beyond the quantum limit, we observe a marked increase/decrease in electrical resistivity when $E_F$ is above/below the Dirac node that we show originates from the Fermi surface topology. This effect represents a measurement of the electron distribution on the low-index ($n=0,-1$) Landau levels and is uniquely enabled by the finite bulk $k_z$ dispersion along the $c$-axis and strong Rashba spin-orbit coupling strength of the system. The Dirac node is independently identified by Shubnikov-de Haas oscillations as a vanishing Fermi surface cross section at $k_z=0$. Additionally we find that the violation of Kohlers rule allows a distinct insight into the temperature evolution of the observed quantum magnetoresistance effects.



rate research

Read More

The nature of Fermi surface defines the physical properties of conductors and many physical phenomena can be traced to its shape. Although the recent discovery of a current-dependent nonlinear magnetoresistance in spin-polarized non-magnetic materials has attracted considerable attention in spintronics, correlations between this phenomenon and the underlying fermiology remain unexplored. Here, we report the observation of nonlinear magnetoresistance at room temperature in a semimetal WTe2, with an interesting temperature-driven inversion. Theoretical calculations reproduce the nonlinear transport measurements and allow us to attribute the inversion to temperature-induced changes in Fermi surface convexity. We also report a large anisotropy of nonlinear magnetoresistance in WTe2, due to its low symmetry of Fermi surfaces. The good agreement between experiments and theoretical modeling reveals the critical role of Fermi surface topology and convexity on the nonlinear magneto-response. These results lay a new path to explore ramifications of distinct fermiology for nonlinear transport in condensed-matter.
393 - R. D. dos Reis , S. C. Wu , Y. Sun 2016
We report on the pressure evolution of the Fermi surface topology of the Weyl semimetal NbP, probed by Shubnikov-de Haas oscillations in the magnetoresistance combined with ab-initio calculations of the band-structure. Although we observe a drastic effect on the amplitudes of the quantum oscillations, the frequencies only exhibit a weak pressure dependence up to 2.8 GPa. The pressure-induce variations in the oscillation frequencies are consistent with our band-structure calculations. Furthermore, we can relate the changes in the amplitudes to small modifications in the shape of the Fermi surface. Our findings evidenced the stability of the electronic band structure of NbP and demonstrate the power of combining quantum-oscillation studies and band-structure calculations to investigate pressure effects on the Fermi-surface topology in Weyl semimetals.
The Weyl semimetal NbP was found to exhibit topological Fermi arcs and exotic magneto-transport properties. Here, we report on magnetic quantum-oscillation measurements on NbP and construct the 3D Fermi surface with the help of band-structure calculations. We reveal a pair of spin-orbit-split electron pockets at the Fermi energy and a similar pair of hole pockets, all of which are strongly anisotropic. The Fermi surface well explains the linear magnetoresistance observed in high magnetic fields by the quantum-limit scenario. The Weyl points that are located in the $k_z approx pi/c$ plane are found to exist 5 meV above the Fermi energy. Therefore, we predict that the chiral anomaly effect can be realized in NbP by electron doping to drive the Fermi energy to the Weyl points.
250 - R. Lou , Y. F. Xu , L.-X. Zhao 2017
While recent advances in band theory and sample growth have expanded the series of extremely large magnetoresistance (XMR) semimetals in transition metal dipnictides $TmPn_2$ ($Tm$ = Ta, Nb; $Pn$ = P, As, Sb), the experimental study on their electronic structure and the origin of XMR is still absent. Here, using angle-resolved photoemission spectroscopy combined with first-principles calculations and magnetotransport measurements, we performed a comprehensive investigation on MoAs$_2$, which is isostructural to the $TmPn_2$ family and also exhibits quadratic XMR. We resolve a clear band structure well agreeing with the predictions. Intriguingly, the unambiguously observed Fermi surfaces (FSs) are dominated by an open-orbit topology extending along both the [100] and [001] directions in the three-dimensional Brillouin zone. We further reveal the trivial topological nature of MoAs$_2$ by bulk parity analysis. Based on these results, we examine the proposed XMR mechanisms in other semimetals, and conclusively ascribe the origin of quadratic XMR in MoAs$_2$ to the carriers motion on the FSs with dominant open-orbit topology, innovating in the understanding of quadratic XMR in semimetals.
BiTeI has a layered and non-centrosymmetric structure where strong spin-orbit interaction leads to a giant spin splitting in the bulk bands. Here we present high-resolution angle-resolved photoemission (ARPES) data in the UV and soft x-ray regime that clearly disentangle the surface from the bulk electronic structure. Spin-resolved UV-ARPES measurements on opposite, non-equivalent surfaces show identical spin structures, thus clarifying the surface state character. Soft x-ray ARPES data clearly reveal the spindle-torus shape of the bulk Fermi surface, induced by the spin-orbit interaction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا