Do you want to publish a course? Click here

Rational design of metallic nanocavities for resonantly enhanced four-wave mixing

104   0   0.0 ( 0 )
 Added by Yehiam Prior
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optimizing the shape of nanostructures and nano antennas for specific optical properties has evolved to be a very fruitful activity. With modern fabrication tools a large variety of possibilities is available for shaping both nanoparticles and nanocavities; in particular nanocavities in thin metal films have emerged as attractive candidates for new metamaterials and strong linear and nonlinear optical systems. Here we rationally design metallic nanocavities to boost their Four Wave Mixing response by resonating the optical plasmonic resonances with the incoming and generated beams. The linear and nonlinear optical responses as well as the propagation of the electric fields inside the cavities are derived from the solution of Maxwell equations by using the 3D finite-differences time domain method. The observed conversion-efficiency of near infra-red to visible light equals or surpasses that of BBO of equivalent thickness. Implications to further optimization for efficient and broadband ultrathin nonlinear optical materials are discussed.



rate research

Read More

We introduce a new theoretical approach for analyzing pump and probe experiments in non-linear acousto-optic systems. In our approach, the effect of coherently pumped polaritons is modeled as providing time-periodic modulation of the system parameters. Within this framework, propagation of the probe pulse is described by the Floquet version of Maxwells equations and leads to such phenomena as frequency mixing and resonant parametric production of polariton pairs. We analyze light reflection from a slab of insulating material with a strongly excited phonon-polariton mode and obtain analytic expressions for the frequency-dependent reflection coefficient for the probe pulse. Our results are in agreement with recent experiments by Cartella et al. which demonstrated light amplification in resonantly excited SiC insulator. We show that, beyond a critical pumping strength, such systems should exhibit Floquet parametric instability, which corresponds to resonant scattering of the pump polaritons into pairs of finite momentum polaritons. We find that the parametric instability should be achievable in SiC using current experimental techniques and discuss its signatures, including the non-analytic frequency dependence of the reflection coefficient and the probe pulse afterglow. We discuss possible applications of the parametric instability phenomenon and suggest that similar types of instabilities can be present in other photoexcited non-linear systems.
We theoretically investigate and optimize the performance of four-wave mixing (FWM) in microring resonators (MRRs) integrated with two-dimensional (2D) layered graphene oxide (GO) films. Owing to the interaction between the MRRs and the highly nonlinear GO films as well as to the resonant enhancement effect, the FWM efficiency in GO-coated MRRs can be significantly improved. Based on previous experiments, we perform detailed analysis for the influence of the GO film parameters and MRR coupling strength on the FWM conversion efficiency (CE) of the hybrid MRRs. By optimizing the device parameters to balance the trade-off between the Kerr nonlinearity and loss, we achieve a high CE enhancement of ~18.6 dB relative to the uncoated MRR, which is ~8.3 dB higher than previous experimental results. The influence of photo-thermal changes in the GO films as well as variations in the MRR parameters such as the ring radius and waveguide dispersion on the FWM performance is also discussed. These results highlight the significantly improved FWM performance that can be achieved in MRRs incorporating GO films and provide a guide for optimizing their FWM performance.
We suggest a scheme to manipulate paraxial diffraction by utilizing the dependency of a four-wave mixing process on the relative angle between the light fields. A microscopic model for four-wave mixing in a Lambda-type level structure is introduced and compared to recent experimental data. We show that images with feature size as low as 10 micrometers can propagate with very little or even negative diffraction. The mechanism is completely different from that conserving the shape of spatial solitons in nonlinear media, as here diffraction is suppressed for arbitrary spatial profiles. At the same time, the gain inherent to the nonlinear process prevents loss and allows for operating at high optical depths. Our scheme does not rely on atomic motion and is thus applicable to both gaseous and solid media.
When two or more metallic nanoparticles are in close proximity, their plasmonic modes may interact through the near field, leading to additional resonances of the coupled system or to shifts of their resonant frequencies. This process is analogous to atom-hybridization, as had been proposed by Gersten and Nitzan and modeled by Nordlander et al. The coupling between plasmonic modes can be in-phase (symmetric) or out-of-phase (anti-symmetric), reflecting correspondingly, the bonding and anti-bonding nature of such configurations. Since the incoming light redistributes the charge distribution around the metallic nanoparticles, its polarization features play a major role in the nonlinear optical probing of the energy-level landscape upon hybridization. Thus, controlling the nature of coupling between metallic nanostructures is of a great importance as it enables tuning their spectral responses leading to novel devices which may surpass the diffraction limit.
150 - Guangyuan Li , Stefano Palomba , 2019
Plasmonic waveguides are an essential element of nanoscale coherent sources, including nanolasers and four-wave mixing (FWM) devices. Here we report how the design of the plasmonic waveguide needs to be guided by the ultimate application. This contrasts with traditional approaches in which the waveguide is considered in isolation. We find that hybrid plasmonic waveguides, with a nonlinear material sandwiched between the metal substrate and a high-index layer, are best suited for FWM applications, whereas metallic wedges are preferred in nanolasers. We also find that in plasmonic nanolasers high-index buffer layers perform better than more traditional low-index buffers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا