Do you want to publish a course? Click here

LHCb Detector Performance

200   0   0.0 ( 0 )
 Added by Christopher Jones
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCbs unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.



rate research

Read More

136 - R.Aaij , J.Albrecht , F.Alessio 2012
This paper presents the design of the LHCb trigger and its performance on data taken at the LHC in 2011. A principal goal of LHCb is to perform flavour physics measurements, and the trigger is designed to distinguish charm and beauty decays from the light quark background. Using a combination of lepton identification and measurements of the particles transverse momenta the trigger selects particles originating from charm and beauty hadrons, which typically fly a finite distance before decaying. The trigger reduces the roughly 11,MHz of bunch-bunch crossings that contain at least one inelastic $pp$ interaction to 3,kHz. This reduction takes place in two stages; the first stage is implemented in hardware and the second stage is a software application that runs on a large computer farm. A data-driven method is used to evaluate the performance of the trigger on several charm and beauty decay modes.
The LHCb experiment is dedicated to the study of the $c-$ and $b-$hadron decays, including long-lived particles such as $K_s$ and strange baryons ($Lambda^0$, $Xi^-$, etc... ). These kind of particles are difficult to reconstruct by the LHCb tracking system since they escape detection in the first tracker. A new method to evaluate the performance of the different tracking algorithms for long-lived particles using real data samples has been developed. Special emphasis is laid on particles hitting only part of the tracking system of the new LHCb upgrade detector.
The LHCb experiment has been taking data at the Large Hadron Collider (LHC) at CERN since the end of 2009. One of its key detector components is the Ring-Imaging Cherenkov (RICH) system. This provides charged particle identification over a wide momentum range, from 2-100 GeV/c. The operation and control software, and online monitoring of the RICH system are described. The particle identification performance is presented, as measured using data from the LHC. Excellent separation of hadronic particle types (pion, kaon and proton) is achieved.
Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic van der Meer scan method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.
86 - Philip Ilten 2014
Spin correlations for tau lepton decays are included in the Pythia 8 event generation software and the spin correlations for the decays of tau leptons produced from electroweak and Higgs bosons are calculated. Decays of the tau lepton using sophisticated resonance models are included in Pythia 8 for all channels with experimentally observed branching fractions greater than 0.04%. The mass distributions for the decay products of these channels are validated and the technical implementation of these decays is described. A measurement of the inclusive Z to di-tau cross-section using 1.0 inverse fb of data from pp collisions at sqrt(s) = 7 TeV collected with the LHCb detector is presented. Reconstructed final states containing two muons, a muon and an electron, a muon and a charged hadron, or an electron and a charged hadron are selected as candidates. The cross-section for Z bosons with a mass between 60 and 120 GeV decaying into tau leptons with pseudo-rapidities between 2.0 and 4.5 and transverse momenta greater than 20 GeV is measured to be 72.3 +- 3.5 +- 2.9 +- 2.5 pb. The first uncertainty is statistical, the second uncertainty is systematic, and the third is to due the integrated luminosity uncertainty. Limits on the production of neutral Higgs bosons decaying into tau lepton pairs with pseudo-rapidities between 2.0 and 4.5 are set at a 95% confidence level using the same LHCb dataset. A model independent upper limit on the production of neutral Higgs bosons decaying into tau leptons is set and ranges between 8.6 pb for a Higgs boson mass of 90 GeV to 0.7 pb for a Higgs boson mass of 250 GeV. An upper limit on tan-beta in the CP-odd Higgs mass and tan-beta plane is set for the mh-max scenario of the minimal supersymmetric model and varies from 34 for a CP-odd Higgs boson mass of 90 GeV to 70 for a CP-odd Higgs boson mass of 140 GeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا