Do you want to publish a course? Click here

Electron-boson spectral density of LiFeAs obtained from optical data

128   0   0.0 ( 0 )
 Added by Jungseek Hwang
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze existing optical data in the superconducting state of LiFeAs at $T =$ 4 K, to recover its electron-boson spectral density. A maximum entropy technique is employed to extract the spectral density $I^2chi(omega)$ from the optical scattering rate. Care is taken to properly account for elastic impurity scattering which can importantly affect the optics in an $s$-wave superconductor, but does not eliminate the boson structure. We find a robust peak in $I^2chi(omega)$ centered about $Omega_R cong$ 8.0 meV or 5.3 $k_B T_c$ (with $T_c =$ 17.6 K). Its position in energy agrees well with a similar structure seen in scanning tunneling spectroscopy (STS). There is also a peak in the inelastic neutron scattering (INS) data at this same energy. This peak is found to persist in the normal state at $T =$ 23 K. There is evidence that the superconducting gap is anisotropic as was also found in low temperature angular resolved photoemission (ARPES) data.



rate research

Read More

Super-high resolution laser-based angle-resolved photoemission measurements are carried out on LiFeAs superconductor to investigate its electron dynamics. Three energy scales at $sim$20 meV, $sim$34 meV and $sim$55 meV are revealed for the first time in the electron self-energy both in the superconducting state and normal state. The $sim$20 meV and $sim$34 meV scales can be attributed to the coupling of electrons with sharp bosonic modes which are most likely phonons. These observations provide definitive evidence on the existence of mode coupling in iron-based superconductors.
297 - F. Schmitt , W. S. Lee , D.-H. Lu 2008
Samples of Nd(2-x)Ce(x)CuO(4), an electron-doped high temperature superconducting cuprate (HTSC), near optimal doping at x = 0.155 were measured via angle resolved photoemission (ARPES). We report a renormalization feature in the self energy (kink) in the band dispersion at 50 - 60 meV present in nodal and antinodal cuts across the Fermi surface. Specifically, while the kink had previously only been seen in the antinodal region, it is now observed also in the nodal region, reminiscent of what has been observed in hole-doped cuprates.
116 - M. Gooch , B. Lv , J. H. Tapp 2009
The effect of hydrostatic pressure on the superconductivity in LiFeAs is investigated up to 1.8 GPa. The superconducting transition temperature, T_c, decreases linearly with pressure at a rate of 1.5 K/GPa. The negative pressure coefficient of T_c and the high ambient pressure T_c indicate that LiFeAs is the high-pressure analogue of the isoelectronic SrFe_2As_2 and BaFe_2As_2.
We present a detailed study of 75As NMR Knight shift and spin-lattice relaxation rate in the normal state of stoichiometric polycrystalline LiFeAs. Our analysis of the Korringa relation suggests that LiFeAs exhibits strong antiferromagnetic fluctuations, if transferred hyperfine coupling is a dominant interaction between 75As nuclei and Fe electronic spins, whereas for an on-site hyperfine coupling scenario, these are weaker, but still present to account for our experimental observations. Density-functional calculations of electric field gradient correctly reproduce the experimental values for both 75As and 7Li sites.
In conventional s-wave superconductors, only magnetic impurities exhibit impurity bound states, whereas for an s+- order parameter they can occur for both magnetic and non-magnetic impurities. Impurity bound states in superconductors can thus provide important insight into the order parameter. Here, we present a combined experimental and theoretical study of native and engineered iron-site defects in LiFeAs. Detailed comparison of tunneling spectra measured on impurities with spin fluctuation theory reveals a continuous evolution from negligible impurity bound state features for weaker scattering potential to clearly detectable states for somewhat stronger scattering potentials. All bound states for these intermediate strength potentials are pinned at or close to the gap edge of the smaller gap, a phenomenon that we explain and ascribe to multi-orbital physics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا