No Arabic abstract
We discuss an analytical approximation for the matter power spectrum covariance matrix and its inverse on translinear scales, $k sim 0.1h - 0.8h/textrm{Mpc}$ at $z = 0$. We proceed to give an analytical expression for the Fisher information matrix of the nonlinear density field spectrum, and derive implications for its cosmological information content. We find that the spectrum information is characterized by a pair of upper bounds, plateaux, caused by the trispectrum, and a knee in the presence of white noise. The effective number of Fourier modes, normally growing as a power law, is bounded from above by these plateaux, explaining naturally earlier findings from $N$-body simulations. These plateaux limit best possible measurements of the nonlinear power at the percent level in a $h^{-3}textrm{Gpc}^3$ volume; the extraction of model parameters from the spectrum is limited explicitly by their degeneracy to the nonlinear amplitude. The value of the first, super-survey (SS) plateau depends on the characteristic survey volume and the large scale power; the second, intra-survey (IS) plateau is set by the small scale power. While both have simple interpretations within the hierarchical textit{Ansatz}, the SS plateau can be predicted and generalized to still smaller scales within Takada and Hus spectrum response formalism. Finally, the noise knee is naturally set by the density of tracers.
We develop a purely mathematical tool to recover some of the information lost in the non-linear collapse of large-scale structure. From a set of 141 simulations of dark matter density fields, we construct a non-linear Weiner filter in order to separate Gaussian and non-Gaussian structure in wavelet space. We find that the non-Gaussian power is dominant at smaller scales, as expected from the theory of structure formation, while the Gaussian counterpart is damped by an order of magnitude on small scales. We find that it is possible to increase the Fisher information by a factor of three before reaching the translinear plateau, an effect comparable to other techniques like the linear reconstruction of the density field.
We propose an alternative approach to the construction of fitting functions to the nonlinear matter power spectrum extracted from $N$-body simulations based on the relative matter power spectrum $delta(k,a)$, defined as the fractional deviation in the absolute matter power spectrum produced by a target cosmology away from a reference $Lambda$CDM prediction. From the computational perspective, $delta(k,a)$ is fairly insensitive to the specifics of the simulation settings, and numerical convergence at the 1%-level can be readily achieved without the need for huge computing capacity. Furthermore, $delta(k,a)$ exhibits several interesting properties that enable a piece-wise construction of the full fitting function, whereby component fitting functions are sought for single-parameter variations and then multiplied together to form the final product. Then, to obtain 1%-accurate absolute power spectrum predictions for any target cosmology only requires that the community as a whole invests in producing one single ultra-precise reference $Lambda$CDM absolute power spectrum, to be combined with the fitting function to produce the desired result. To illustrate the power of this approach, we have constructed the fitting function RelFit using only five relatively inexpensive $w$CDM simulations (box length $L=256 h^{-1}$Mpc, $N=1024^3$ particles, initialised at $z_i=49$). In a 6-parameter space spanning ${omega_m,A_s,n_s,w,omega_b,h}$, the output relative power spectra of RelFit are consistent with the predictions of the CosmicEmu emulator to 1% or better for a wide range of cosmologies up to $ksimeq 10$/Mpc. Thus, our approach could provide an inexpensive and democratically accessible route to fulfilling the 1%-level accuracy demands of the upcoming generation of large-scale structure probes, especially in the exploration of non-standard or exotic cosmologies on nonlinear scales.
We study the effects of dark energy (DE) anisotropic stress on features of the matter power spectrum (PS). We employ the Parametrized Post-Friedmannian (PPF) formalism to emulate an effective DE, and model its anisotropic stress properties through a two-parameter equation that governs its overall amplitude ($g_0$) and transition scale ($c_g$). For the background cosmology, we consider different equations of state to model DE including a constant $w_0$ parameter, and models that provide thawing (CPL) and freezing (nCPL) behaviors. We first constrain these parameters by using the Pantheon, BAO, $H_0$ and CMB Planck data. Then, we analyze the role played by these parameters in the linear PS. In order for the anisotropic stress not to provoke deviations larger than $10%$ and $5%$ with respect to the $Lambda$CDM PS at $k sim 0.01 ,h/text{Mpc}$, the parameters have to be in the range $-0.30< g_0 < 0.32$, $0 leq c_g^2 < 0.01$ and $-0.15 < g_0 < 0.16$, $0 leq c_g^2 < 0.01$, respectively. Additionally, we compute the leading nonlinear corrections to the PS using standard perturbation theory in real and redshift space, showing that the differences with respect to the $Lambda$CDM are enhanced, especially for the quadrupole and hexadecapole RSD multipoles.
We investigate the impact of a common approximation on weak lensing power spectra: the use of single-epoch matter power spectra in integrals over redshift. We disentangle this from the closely connected Limbers approximation. We derive the unequal-time matter power spectrum at one-loop in standard perturbation theory and effective field theory to deal with non-linear physics. We compare these formalisms and conclude that the unequal-time power spectrum using effective field theory breaks for larger scales. As an alternative, we introduce the midpoint approximation. We also provide, for the first time, a fitting function for the time evolution of the effective field theory counterterms based on the Quijote simulations. Then we compute the angular power spectrum using a range of approaches: the Limbers approximation, and the geometric and midpoint approximations. We compare our results with the exact calculation at all angular scales using the unequal-time power spectrum. We use DES Y1 and LSST-like redshift distributions for our analysis. We find that the use of the Limbers approximation in weak lensing diverges from the exact calculation of the angular power spectrum on large-angle separations, $ell < 10$. Even though this deviation is of order $2%$ maximum for cosmic lensing, we find the biggest effect for galaxy clustering and galaxy-galaxy lensing. We show that not only is this true for upcoming galaxy surveys, but also for current data such as DES Y1. Finally, we make our pipeline and analysis publicly available as a Python package called unequalpy.
We model the 21cm power spectrum across the Cosmic Dawn and the Epoch of Reionization (EoR) in fuzzy dark matter (FDM) cosmologies. The suppression of small mass halos in FDM models leads to a delay in the onset redshift of these epochs relative to cold dark matter (CDM) scenarios. This strongly impacts the 21cm power spectrum and its redshift evolution. The 21cm power spectrum at a given stage of the EoR/Cosmic Dawn process is also modified: in general, the amplitude of 21cm fluctuations is boosted by the enhanced bias factor of galaxy hosting halos in FDM. We forecast the prospects for discriminating between CDM and FDM with upcoming power spectrum measurements from HERA, accounting for degeneracies between astrophysical parameters and dark matter properties. If FDM constitutes the entirety of the dark matter and the FDM particle mass is 10-21eV, HERA can determine the mass to within 20 percent at 2-sigma confidence.