No Arabic abstract
We predict the non-linear non-equilibrium response of a magnetolyte, the Coulomb fluid of magnetic monopoles in spin ice. This involves an increase of the monopole density due to the second Wien effect---a universal and robust enhancement for Coulomb systems in an external field---which in turn speeds up the magnetization dynamics, manifest in a non-linear susceptibility. Along the way, we gain new insights into the AC version of the classic Wien effect. One striking discovery is that of a frequency window where the Wien effect for magnetolyte and electrolyte are indistinguishable, with the former exhibiting perfect symmetry between the charges. In addition, we find a new low-frequency regime where the growing magnetization counteracts the Wien effect. We discuss for what parameters best to observe the AC Wien effect in Dy$_2$Ti$_2$O$_7$.
We study quantum transport after an inhomogeneous quantum quench in a free fermion lattice system in the presence of a localised defect. Using a new rigorous analytical approach for the calculation of large time and distance asymptotics of physical observables, we derive the exact profiles of particle density and current. Our analysis shows that the predictions of a semiclassical approach that has been extensively applied in similar problems match exactly with the correct asymptotics, except for possible finite distance corrections close to the defect. We generalise our formulas to an arbitrary non-interacting particle-conserving defect, expressing them in terms of its scattering properties.
We investigate numerically the time dependence of window overlaps in a three-dimensional Ising spin glass below its transition temperature after a rapid quench. Using an efficient GPU implementation, we are able to study large systems up to lateral length $L=128$ and up to long times of $t=10^8$ sweeps. We find that the data scales according to the ratio of the window size $W$ to the non-equilibrium coherence length $xi(t)$. We also show a substantial change in behavior if the system is run for long enough that it globally equilibrates, i.e. $xi(t) approx L/2$, where $L$ is the lattice size. This indicates that the local behavior of a spin glass depends on the spin configurations (and presumably also the bonds) far away. We compare with similar simulations for the Ising ferromagnet. Based on these results, we speculate on a connection between the non-equilibrium dynamics discussed here and averages computed theoretically using the metastate.
We provide systematic analysis on a non-Hermitian PT -symmetric quantum impurity system both in and out of equilibrium, based on exact computations. In order to understand the interplay between non-Hermiticity and Kondo physics, we focus on a prototypical noninteracting impurity system, the resonant level model, with complex coupling constants. Explicitly constructing biorthogonal basis, we study its thermodynamic properties as well as the Loschmidt echo starting from the initially disconnected two free fermion chains. Remarkably, we observe the universal crossover physics in the Loschmidt echo, both in the PT broken and unbroken regimes. We also find that the ground state quantities we compute in the PT broken regime can be obtained by analytic continuation. It turns out that Kondo screening ceases to exist in the PT broken regime, which was also previously predicted in the non-hermitian Kondo model. All the analytical results are corroborated against biorthogonal free fermion numerics.
We extend the notion of the Eigenstate Thermalization Hypothesis (ETH) to Open Quantum Systems governed by the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) Master Equation. We present evidence that the eigenstates of non-equilibrium steady state (NESS) density matrices obey a generalization of ETH in boundary-driven systems when the bulk Hamiltonian is non-integrable, just as eigenstates of Gibbs density matrices are conjectured to do in equilibrium. This generalized ETH, which we call NESS-ETH, can be used to obtain representative pure states that reproduce the expectation values of few-body operators in the NESS. The density matrices of these representative pure states can be further interpreted as weak solutions of the GKLS Master Equation. Additionally, we explore the validity and breakdown of NESS-ETH in the presence of symmetries, integrability and many-body localization in the bulk Hamiltonian.
We theoretically study a Kitaev wire interrupted by an extra site which gives rise to super exchange coupling between two Majorana bound states. We show that this system hosts a tunable, non-equlibrium Josephson effect with a characteristic $8pi$ periodicity of the Josephson current. We elucidate the physical mechanism deriving a minimal model for the junction and confirm its quantitative accuracy by comparison to the numerical solution of the full model. The visibility of the $8pi$ periodicity of the Josephson current is then studied using time-dependent simulations including the effects of dephasing and particle losses. Our findings provide a novel signature of Majorana quasi-particles which is qualitatively different form the behavior of a conventional superconductor, and can be experimentally verified in cold atom systems using alkaline-earth-like atoms.