Do you want to publish a course? Click here

On measure contraction property without Ricci curvature lower bound

272   0   0.0 ( 0 )
 Added by Paul Woon Yin Lee
 Publication date 2014
  fields
and research's language is English
 Authors Paul W.Y. Lee




Ask ChatGPT about the research

Measure contraction properties $MCP(K,N)$ are synthetic Ricci curvature lower bounds for metric measure spaces which do not necessarily have smooth structures. It is known that if a Riemannian manifold has dimension $N$, then $MCP(K,N)$ is equivalent to Ricci curvature bounded below by $K$. On the other hand, it was observed in cite{Ri} that there is a family of left invariant metrics on the three dimensional Heisenberg group for which the Ricci curvature is not bounded below. Though this family of metric spaces equipped with the Harr measure satisfy $MCP(0,5)$. In this paper, we give sufficient conditions for a $2n+1$ dimensional weakly Sasakian manifold to satisfy $MCP(0,2n+3)$. This extends the above mentioned result on the Heisenberg group in cite{Ri}.



rate research

Read More

We revisit classical eigenvalue inequalities due to Buser, Cheng, and Gromov on closed Riemannian manifolds, and prove t
Let $M$ be a compact $n$-manifold of $operatorname{Ric}_Mge (n-1)H$ ($H$ is a constant). We are concerned with the following space form rigidity: $M$ is isometric to a space form of constant curvature $H$ under either of the following conditions: (i) There is $rho>0$ such that for any $xin M$, the open $rho$-ball at $x^*$ in the (local) Riemannian universal covering space, $(U^*_rho,x^*)to (B_rho(x),x)$, has the maximal volume i.e., the volume of a $rho$-ball in the simply connected $n$-space form of curvature $H$. (ii) For $H=-1$, the volume entropy of $M$ is maximal i.e. $n-1$ ([LW1]). The main results of this paper are quantitative space form rigidity i.e., statements that $M$ is diffeomorphic and close in the Gromov-Hausdorff topology to a space form of constant curvature $H$, if $M$ almost satisfies, under some additional condition, the above maximal volume condition. For $H=1$, the quantitative spherical space form rigidity improves and generalizes the diffeomorphic sphere theorem in [CC2].
96 - Paul W.Y. Lee 2015
Measure contraction property is a synthetic Ricci curvature lower bound for metric measure spaces. We consider Sasakian manifolds with non-negative Tanaka-Webster Ricci curvature equipped with the metric measure space structure defined by the sub-Riemannian metric and the Popp measure. We show that these spaces satisfy the measure contraction property $MCP(0,N)$ for some positive integer $N$. We also show that the same result holds when the Sasakian manifold is equipped with a family of Riemannian metrics extending the sub-Riemannian one.
This is the second paper of two in a series under the same title ([CRX]); both study the quantitative volume space form rigidity conjecture: a closed $n$-manifold of Ricci curvature at least $(n-1)H$, $H=pm 1$ or $0$ is diffeomorphic to a $H$-space form if for every ball of definite size on $M$, the lifting ball on the Riemannian universal covering space of the ball achieves an almost maximal volume, provided the diameter of $M$ is bounded for $H e 1$. In [CRX], we verified the conjecture for the case that $M$ or its Riemannian universal covering space $tilde M$ is not collapsed for $H=1$ or $H e 1$ respectively. In the present paper, we will verify this conjecture for the case that Ricci curvature is also bounded above, while the above non-collapsing condition is not required.
We show that the scalar curvature of a steady gradient Ricci soliton satisfying that the ratio between the square norm of the Ricci tensor and the square of the scalar curvature is bounded by one half, is boundend from below by the hyperbolic secant of one half the distance function from a fixed point.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا