Do you want to publish a course? Click here

PYTHIA hadronization process tuning in GENIE neutrino interaction generator

112   0   0.0 ( 0 )
 Added by Teppei Katori Dr.
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modeled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.



rate research

Read More

The GENIE neutrino Monte Carlo describes neutrino-induced hadronization with an effective model, known as AGKY, which is interfaced with PYTHIA at high invariant mass. Only the low-mass AGKY model parameters were extracted from hadronic shower data from the FNAL 15 ft and BEBC experiments. In this paper, the first hadronization tune on averaged charged multiplicity data from deuterium and hydrogen bubble chamber experiments is presented, with a complete estimation of parameter uncertainties. A partial tune on deuterium data only highlights the tensions between hydrogen and deuterium datasets.
Faced with unresolved tensions between neutrino interaction measurements at few-GeV neutrino energies, current experiments are forced to accept large systematic uncertainties to cover discrepancies between their data and model predictions. In this paper, the widely used pion production model in GENIE is compared to four MINERvA charged current pion production measurements using NUISANCE. Tunings, ie, adjustments of model parameters, to help match GENIE to MINERvA and older bubble chamber data are presented here. We find that scattering off nuclear targets as measured in MINERvA is not in good agreement with scattering off nucleon (hydrogen or deuterium) targets in the bubble chamber data. An additional ad hoc correction for the low-$Q^2$ region, where collective effects are expected to be large, is also presented. While these tunings and corrections improve the agreement of GENIE with the data, the modeling is imperfect. The development of these tunings within the NUISANCE frameworkallows for straightforward extensions to other neutrino event generators and models, and allows omitting and including new data sets as they become available.
The extraction of neutrino mixing parameters from accelerator-based neutrino oscillation experiments relies on proper modeling of neutrino-nucleus scattering processes using neutrino-interaction event generators. Experimental tests of these generators are difficult due to the broad range of neutrino energies produced in accelerator-based beams and the low statistics of current experiments. Here we overcome these difficulties by exploiting the similarity of neutrino and electron interactions with nuclei to test neutrino event generators using high-precision inclusive electron scattering data. To this end, we revised the electron-scattering mode of the GENIE event generator ($e$-GENIE) to include electron-nucleus bremsstrahlung radiation effects and to use, when relevant, the exact same physics models and model parameters, as the standard neutrino-scattering version. We also implemented new models for quasielastic (QE) scattering and meson exchange currents (MEC) based on the theory-inspired SuSAv2 approach. Comparing the new $e$-GENIE predictions with inclusive electron scattering data, we find an overall adequate description of the data in the QE- and MEC-dominated lower energy transfer regime, especially when using the SuSAv2 models. Higher energy transfer-interactions, which are dominated by resonance production, are still not well modeled by $e$-GENIE.
NUISANCE is an open source C++ framework which facilitates detailed studies of neutrino interaction cross-section models implemented in Monte Carlo neutrino event generators. It provides a host of automated methods to perform comparisons of multiple generators to published cross-section measurements and each other. External reweighting libraries are used to allow the end-user to evaluate the impact of model parameters variations in the generators with data, or to tune the generator predictions to arbitrary dataset combinations. The design is modular and focusses on ease-of-use to allow new datasets and more generators to be added without requiring detailed understanding of the entire NUISANCE package. We discuss the motivation for the NUISANCE framework and suggested usage cases, alongside a description of its core structure.
The MiniBooNE large axial mass anomaly has prompted a great deal of theoretical work on sophisticated Charged Current Quasi-Elastic (CCQE) neutrino interaction models in recent years. As the dominant interaction mode at T2K energies, and the signal process in oscillation analyses, it is important for the T2K experiment to include realistic CCQE cross section uncertainties in T2K analyses. To this end, T2Ks Neutrino Interaction Working Group has implemented a number of recent models in NEUT, T2Ks primary neutrino interaction event generator. In this paper, we give an overview of the models implemented, and present fits to published muon neutrino and muon antineutrino CCQE cross section measurements from the MiniBooNE and MINERvA experiments. The results of the fits are used to select a default cross section model for future T2K analyses, and to constrain the cross section uncertainties of the model. We find a model consisting of a modified relativistic Fermi gas model and multinucleon interactions most consistently describes the available data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا