Do you want to publish a course? Click here

A new methodology to test galaxy formation models using the dependence of clustering on stellar mass

138   0   0.0 ( 0 )
 Added by David Campbell
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present predictions for the two-point correlation function of galaxy clustering as a function of stellar mass, computed using two n



rate research

Read More

400 - Xian Zhong Zheng 2007
We combine Spitzer 24micron observations with data from the COMBO-17 survey for ~15,000 0.2<z<1 galaxies to determine how the average star formation rates (SFR) have evolved for galaxy sub-populations of different stellar masses. In the determination of <SFR> we consider both the ultraviolet (UV) and the infrared (IR) luminosities, and account for the contributions of galaxies that are individually undetected at 24micron through image stacking. For all redshifts we find that higher-mass galaxies have substantially lower specific SFR, <SFR>/<M*>, than lower-mass ones. However, we find the striking result that the rate of decline in cosmic SFR with redshift is nearly the same for massive and low-mass galaxies, i.e. NOT a strong function of stellar mass. This analysis confirms one version of what has been referred to as `downsizing, namely that the epoch of major mass build-up in massive galaxies is substantially earlier than the epoch of mass build-up in low-mass galaxies. Yet it shows that star formation activity is NOT becoming increasingly limited to low-mass galaxies towards the present epoch. We argue that this suggests that heating by AGN-powered radio jets is not the dominant mechanism responsible for the decline in cosmic SFR since z~1, which is borne out by comparison with semi-analytic models that include this effect.
Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z=0.2 to z=1. At low stellar mass, we find that halo mass scales as Mh M*^0.46 and that this scaling does not evolve significantly with redshift to z=1. We show that the dark-to-stellar ratio, Mh/M*, varies from low to high masses, reaching a minimum of Mh/M*~27 at M*=4.5x10^10 Msun and Mh=1.2x10^12 Msun. This minimum is important for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central galaxy has been the most efficient. We describe the SHMR at this minimum in terms of the pivot stellar mass, M*piv, the pivot halo mass, Mhpiv, and the pivot ratio, (Mh/M*)piv. Thanks to a homogeneous analysis of a single data set, we report the first detection of mass downsizing trends for both Mhpiv and M*piv. The pivot stellar mass decreases from M*piv=5.75+-0.13x10^10 Msun at z=0.88 to M*piv=3.55+-0.17x10^10 Msun at z=0.37. Intriguingly, however, the corresponding evolution of Mhpiv leaves the pivot ratio constant with redshift at (Mh/M*)piv~27. We use simple arguments to show how this result raises the possibility that star formation quenching may ultimately depend on Mh/M* and not simply Mh, as is commonly assumed. We show that simple models with such a dependence naturally lead to downsizing in the sites of star formation. Finally, we discuss the implications of our results in the context of popular quenching models, including disk instabilities and AGN feedback.
We study the dependence of angular two-point correlation functions on stellar mass ($M_{*}$) and specific star formation rate (sSFR) of $M_{*}>10^{10}M_{odot}$ galaxies at $zsim1$. The data from UKIDSS DXS and CFHTLS covering 8.2 deg$^{2}$ sample scales larger than 100 $h^{-1}$Mpc at $zsim1$, allowing us to investigate the correlation between clustering, $M_{*}$, and star formation through halo modeling. Based on halo occupation distributions (HODs) of $M_{*}$ threshold samples, we derive HODs for $M_{*}$ binned galaxies, and then calculate the $M_{*}/M_{rm halo}$ ratio. The ratio for central galaxies shows a peak at $M_{rm halo}sim10^{12}h^{-1}M_{odot}$, and satellites predominantly contribute to the total stellar mass in cluster environments with $M_{*}/M_{rm halo}$ values of 0.01--0.02. Using star-forming galaxies split by sSFR, we find that main sequence galaxies ($rm log,sSFR/yr^{-1}sim-9$) are mainly central galaxies in $sim10^{12.5} h^{-1}M_{odot}$ haloes with the lowest clustering amplitude, while lower sSFR galaxies consist of a mixture of both central and satellite galaxies where those with the lowest $M_{*}$ are predominantly satellites influenced by their environment. Considering the lowest $M_{rm halo}$ samples in each $M_{*}$ bin, massive central galaxies reside in more massive haloes with lower sSFRs than low mass ones, indicating star-forming central galaxies evolve from a low $M_{*}$--high sSFR to a high $M_{*}$--low sSFR regime. We also find that the most rapidly star-forming galaxies ($rm log,sSFR/yr^{-1}>-8.5$) are in more massive haloes than main sequence ones, possibly implying galaxy mergers in dense environments are driving the active star formation. These results support the conclusion that the majority of star-forming galaxies follow secular evolution through the sustained but decreasing formation of stars.
160 - B. Meneux , L. Guzzo , B. Garilli 2008
We have investigated the dependence of galaxy clustering on their stellar mass at z~1, using the data from the VIMOS-VLT Deep Survey (VVDS). We have measured the projected two-point correlation function of galaxies, wp(rp) for a set of stellar mass selected samples at an effective redshift <z>=0.85. We have control and quantify all effects on galaxy clustering due to the incompleteness of our low mass samples. We find that more massive galaxies are more clustered. When compared to similar results at z~0.1 in the SDSS, we observed no evolution of the projected correlation function for massive galaxies. These objects present a stronger linear bias at z~1 with respect to low mass galaxies. As expected, massive objects at high redshift are found in the highest pics of the dark matter density field.
We present results on the clustering properties of galaxies as a function of both stellar mass and specific star formation rate (sSFR) using data from the PRIMUS and DEEP2 galaxy redshift surveys spanning 0.2 < z < 1.2. We use spectroscopic redshifts of over 100,000 galaxies covering an area of 7.2 deg^2 over five separate fields on the sky, from which we calculate cosmic variance errors. We find that the galaxy clustering amplitude is as strong of a function of sSFR as of stellar mass, and that at a given sSFR, it does not significantly depend on stellar mass within the range probed here. We further find that within the star-forming population and at a given stellar mass, galaxies above the main sequence of star formation with higher sSFR are less clustered than galaxies below the main sequence with lower sSFR. We also find that within the quiescent population, galaxies with higher sSFR are less clustered than galaxies with lower sSFR, at a given stellar mass. We show that the galaxy clustering amplitude smoothly increases with both increasing stellar mass and decreasing sSFR, implying that galaxies likely evolve across the main sequence, not only along it, before galaxies eventually become quiescent. These results imply that the stellar mass to halo mass relation, which connects galaxies to dark matter halos, likely depends on sSFR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا