No Arabic abstract
Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z=0.2 to z=1. At low stellar mass, we find that halo mass scales as Mh M*^0.46 and that this scaling does not evolve significantly with redshift to z=1. We show that the dark-to-stellar ratio, Mh/M*, varies from low to high masses, reaching a minimum of Mh/M*~27 at M*=4.5x10^10 Msun and Mh=1.2x10^12 Msun. This minimum is important for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central galaxy has been the most efficient. We describe the SHMR at this minimum in terms of the pivot stellar mass, M*piv, the pivot halo mass, Mhpiv, and the pivot ratio, (Mh/M*)piv. Thanks to a homogeneous analysis of a single data set, we report the first detection of mass downsizing trends for both Mhpiv and M*piv. The pivot stellar mass decreases from M*piv=5.75+-0.13x10^10 Msun at z=0.88 to M*piv=3.55+-0.17x10^10 Msun at z=0.37. Intriguingly, however, the corresponding evolution of Mhpiv leaves the pivot ratio constant with redshift at (Mh/M*)piv~27. We use simple arguments to show how this result raises the possibility that star formation quenching may ultimately depend on Mh/M* and not simply Mh, as is commonly assumed. We show that simple models with such a dependence naturally lead to downsizing in the sites of star formation. Finally, we discuss the implications of our results in the context of popular quenching models, including disk instabilities and AGN feedback.
We utilize $Lambda$CDM halo occupation models of galaxy clustering to investigate the evolving stellar mass dependent clustering of galaxies in the PRIsm MUlti-object Survey (PRIMUS) and DEEP2 Redshift Survey over the past eight billion years of cosmic time, between $0.2<z<1.2$. These clustering measurements provide new constraints on the connections between dark matter halo properties and galaxy properties in the context of the evolving large-scale structure of the universe. Using both an analytic model and a set of mock galaxy catalogs, we find a strong correlation between central galaxy stellar mass and dark matter halo mass over the range $M_mathrm{halo}sim10^{11}$-$10^{13}~h^{-1}M_odot$, approximately consistent with previous observations and theoretical predictions. However, the stellar-to-halo mass relation (SHMR) and the mass scale where star formation efficiency reaches a maximum appear to evolve more strongly than predicted by other models, including models based primarily on abundance-matching constraints. We find that the fraction of satellite galaxies in haloes of a given mass decreases significantly from $zsim0.5$ to $zsim0.9$, partly due to the fact that haloes at fixed mass are rarer at higher redshift and have lower abundances. We also find that the $M_1/M_mathrm{min}$ ratio, a model parameter that quantifies the critical mass above which haloes host at least one satellite, decreases from $approx20$ at $zsim0$ to $approx13$ at $zsim0.9$. Considering the evolution of the subhalo mass function vis-`{a}-vis satellite abundances, this trend has implications for relations between satellite galaxies and halo substructures and for intracluster mass, which we argue has grown due to stripped and disrupted satellites between $zsim0.9$ and $zsim0.5$.
We derive stellar masses from SED fitting to rest-frame optical and UV fluxes for 401 star-forming galaxies at z 4, 5, and 6 from Hubble-WFC3/IR observations of the ERS combined with the deep GOODS-S Spitzer/IRAC data (and include a previously-published z 7 sample). A mass-luminosity relation with strongly luminosity-dependent M/Luv ratios is found for the largest sample (299 galaxies) at z 4. The relation M propto L_{UV,1500}^(1.7+/-0.2) has a well-determined intrinsic sample variance of 0.5 dex. This relation is also consistent with the more limited samples at z 5-7. This z 4 mass-luminosity relation, and the well-established faint UV luminosity functions at z 4-7, are used to derive galaxy mass functions (MF) to masses M~10^8 at z 4-7. A bootstap approach is used to derive the MFs to account for the large scatter in the M--Luv relation and the luminosity function uncertainties, along with an analytical crosscheck. The MFs are also corrected for the effects of incompleteness. The incompleteness-corrected MFs are steeper than previously found, with slopes alpha_M-1.4 to -1.6 at low masses. These slopes are, however, still substantially flatter than the MFs obtained from recent hydrodynamical simulations. We use these MFs to estimate the stellar mass density (SMD) of the universe to a fixed M_{UV,AB}<-18 as a function of redshift and find a SMD growth propto(1+z)^{-3.4 +/-0.8} from z 7 to z 4. We also derive the SMD from the completeness-corrected MFs to a mass limit M~10^{8} Msun. Such completeness-corrected MFs and the derived SMDs will be particularly important for model comparisons as future MFs reach to lower masses.
We present the first study of the evolution of the galaxy luminosity and stellar-mass functions (GLF and GSMF) carried out by the Dark Energy Survey (DES). We describe the COMMODORE galaxy catalogue selected from Science Verification images. This catalogue is made of $sim 4times 10^{6}$ galaxies at $0<zlesssim1.3$ over a sky area of $sim155 {rm sq. deg}$ with ${it i}$-band limiting magnitude ${it i}=23 {rm mag}$. Such characteristics are unprecedented for galaxy catalogues and they enable us to study the evolution of GLF and GSMF at $0<z<1$ homogeneously with the same statistically-rich data-set and free of cosmic variance effects. The aim of this study is twofold: i) we want to test our method based on the use of photometric-redshift probability density functions against literature results obtained with spectroscopic redshifts; ii) we want to shed light on the way galaxies build up their masses over cosmic time. We find that both the ${it i}$-band galaxy luminosity and stellar mass functions are characterised by a double-Schechter shape at $z<0.2$. Both functions agree well with those based on spectroscopic redshifts. The DES GSMF agrees especially with those measured for the GAlaxy Mass Assembly and the PRism MUlti-object Survey out to $zsim1$. At $0.2<z<1$, we find the ${it i}$-band luminosity and stellar-mass densities respectively to be constant ($rho_{rm L}propto (1+z)^{-0.12pm0.11}$) and decreasing ($rho_{rm Mstar}propto (1+z)^{-0.5pm0.1}$) with $z$. This indicates that, while at higher redshift galaxies have less stellar mass, their luminosities do not change substantially because of their younger and brighter stellar populations. Finally, we also find evidence for a top-down mass-dependent evolution of the GSMF.
We study the dependence of galaxy clustering on luminosity and stellar mass at redshifts z ~ [0.2-1] using the first zCOSMOS 10K sample. We measure the redshift-space correlation functions xi(rp,pi) and its projection wp(rp) for sub-samples covering different luminosity, mass and redshift ranges. We quantify in detail the observational selection biases and we check our covariance and error estimate techniques using ensembles of semi-analytic mock catalogues. We finally compare our measurements to the cosmological model predictions from the mock surveys. At odds with other measurements, we find a weak dependence of galaxy clustering on luminosity in all redshift bins explored. A mild dependence on stellar mass is instead observed. At z~0.7, wp(rp) shows strong excess power on large scales. We interpret this as produced by large-scale structure dominating the survey volume and extending preferentially in direction perpendicular to the line-of-sight. We do not see any significant evolution with redshift of the amplitude of clustering for bright and/or massive galaxies. The clustering measured in the zCOSMOS data at 0.5<z<1 for galaxies with log(M/M_odot)>=10 is only marginally consistent with predictions from the mock surveys. On scales larger than ~2 h^-1 Mpc, the observed clustering amplitude is compatible only with ~1% of the mocks. Thus, if the power spectrum of matter is LCDM with standard normalization and the bias has no unnatural scale-dependence, this result indicates that COSMOS has picked up a particularly rare, ~2-3 sigma positive fluctuation in a volume of ~10^6 h^-1 Mpc^3. These findings underline the need for larger surveys of the z~1 Universe to appropriately characterize the level of structure at this epoch.
We use measurements of the stellar mass function, galaxy clustering, and galaxy-galaxy lensing within the COSMOS survey to constrain the stellar-to-halo mass relation (SHMR) of star forming and quiescent galaxies over the redshift range z=[0.2,1.0]. For massive galaxies, M*>~10^10.6 Msol, our results indicate that star-forming galaxies grow proportionately as fast as their dark matter halos while quiescent galaxies are outpaced by dark matter growth. At lower masses, there is minimal difference in the SHMRs, implying that the majority low-mass quiescent galaxies have only recently been quenched of their star formation. Our analysis also affords a breakdown of all COSMOS galaxies into the relative numbers of central and satellite galaxies for both populations. At z=1, satellite galaxies dominate the red sequence below the knee in the stellar mass function. But the number of quiescent satellites exhibits minimal redshift evolution; all evolution in the red sequence is due to low-mass central galaxies being quenched of their star formation. At M*~10^10 Msol, the fraction of central galaxies on the red sequence increases by a factor of ten over our redshift baseline, while the fraction of quenched satellite galaxies at that mass is constant with redshift. We define a migration rate to the red sequence as the time derivative of the passive galaxy abundances. We find that the migration rate of central galaxies to the red sequence increases by nearly an order of magnitude from z=1 to z=0. These results imply that the efficiency of quenching star formation for centrals is increasing with cosmic time, while the mechanisms that quench the star formation of satellite galaxies in groups and clusters is losing efficiency.