We study phase transitions driven by fermionic double-trace deformations in gauge-gravity duality. Both the strength of the double trace deformation and the infrared conformal dimension/self-energy scaling of the quasiparticle can be used to decrease the critical temperature to zero, leading to a line of quantum critical points. The self-energy scaling is controlled indirectly through an applied magnetic field and the quantum phase transition naturally involves the condensation of a fermion bilinear which models the spin density wave in an antiferromagnetic state. The nature of the quantum critical points depends on the parameters and we find either a Berezinskii-Kosterlitz-Thouless-type transition or one of two distinct second order transitions with non-mean field exponents. One of these is an anomalous branch where the order parameter of constituent non-Fermi liquid quasiparticles is enhanced by the magnetic field. Stabilization of ordered non-Fermi liquids by a strong magnetic field is observed in experiments with highly oriented pyrolytic graphite.
We clarify the relationship between probe analysis of the supergravity dual and the large-N solution of the localization matrix model for the planar N = 2* super-Yang-Mills theory. A formalism inspired by supergravity allows us to systematically solve the matrix model at strong coupling. Quite surprisingly, we find that quantum phase transitions, known to occur in the N = 2* theory, start to be visible at the third order of the strong-coupling expansion and thus constitute a perturbative phenomenon on the string worldsheet.
We study the properties of a D6-brane probe in the ABJM background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and non-vanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at non-zero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number $N_f$ of unquenched quarks of the background.
Quantum decoherence is the loss of a systems purity due to its interaction with the surrounding environment. Via the AdS/CFT correspondence, we study how a system decoheres when its environment is a strongly-coupled theory. In the Feynman-Vernon formalism, we compute the influence functional holographically by relating it to the generating function of Schwinger-Keldysh propagators and thereby obtain the dynamics of the systems density matrix. We present two exactly solvable examples: (1) a straight string in a BTZ black hole and (2) a scalar probe in AdS$_5$. We prepare an initial state that mimics Schrodingers cat and identify different stages of its decoherence process using the time-scaling behaviors of Renyi entropy. We also relate decoherence to local quantum quenches, and by comparing the time evolution behaviors of the Wigner function and Renyi entropy we demonstrate that the relaxation of local quantum excitations leads to the collapse of its wave-function.
We have studied the magnetic-field-driven quantum phase transitions in Josephson junction arrays with a large coordination number. The characteristic energies were extracted in both the superconducting and insulating phases by integrating the current-voltage characteristics over a voltage range 2eVleqk_B T. For the arrays with a relatively strong Josephson coupling, we observed duality between the energies in the superconducting and insulating phases. The arrays with a weaker Josephson coupling demonstrate an intermediate, bad metal regime in weak magnetic fields; this observation underlines the importance of vortex pinning at large scales and, presumably, emergent inhomogeneity in the presence of strong offset charge disorder.
Coleman-de Luccia processes for AdS to AdS decays in Einstein-scalar theories are studied. Such tunnelling processes are interpreted as vev-driven holographic RG flows of a quantum field theory on de Sitter space-time. These flows do not exist for generic scalar potentials, which is the holographic formulation of the fact that gravity can act to stabilise false AdS vacua. The existence of Coleman-de Luccia tunnelling solutions in a potential with a false AdS vacuum is found to be tied to the existence of exotic RG flows in the same potential. Such flows are solutions where the flow skips possible fixed points or reverses direction in the coupling. This connection is employed to construct explicit potentials that admit Coleman-de Luccia instantons in AdS and to study the associated tunnelling solutions. Thin-walled instantons are observed to correspond to dual field theories with a parametrically large value of the dimension $Delta$ for the operator dual to the scalar field, casting doubt on the attainability of this regime in holography. From the boundary perspective, maximally symmetric instantons describe the probability of symmetry breaking of the dual QFT in de Sitter. It is argued that, even when such instantons exist, they do not imply an instability of the same theory on flat space or on $Rtimes S^3$.