Do you want to publish a course? Click here

Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunneling microscopy

279   0   0.0 ( 0 )
 Added by Jairo Velasco Jr.
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Defects play a key role in determining the properties of most materials and, because they tend to be highly localized, characterizing them at the single-defect level is particularly important. Scanning tunneling microscopy (STM) has a history of imaging the electronic structure of individual point defects in conductors, semiconductors, and ultrathin films, but single-defect electronic characterization at the nanometer-scale remains an elusive goal for intrinsic bulk insulators. Here we report the characterization and manipulation of individual native defects in an intrinsic bulk hexagonal boron nitride (BN) insulator via STM. Normally, this would be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by employing a graphene/BN heterostructure, which exploits graphenes atomically thin nature to allow visualization of defect phenomena in the underlying bulk BN. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunneling spectroscopy (STS), we obtain charge and energy-level information for these BN defect structures. In addition to characterizing such defects, we find that it is also possible to manipulate them through voltage pulses applied to our STM tip.



rate research

Read More

Elemental phosphorous is believed to have several stable allotropes that are energetically nearly degenerate, but chemically reactive. To prevent chemical degradation under ambient conditions, these structures may be capped by monolayers of hexagonal boron nitride ({em h}-BN) or graphene. We perform {em ab initio} density functional calculations to simulate scanning tunneling microscopy (STM) images of different layered allotropes of phosphorus and study the effect of capping layers on these images. We find that protective monolayers of insulating {em h}-BN allow to distinguish between the different structural phases of phosphorus underneath, even though the images are filtered through only nitrogen atoms that appear transparent. No such distinction is possible for phosphorus films capped by semimetallic graphene that masks the underlying structure. Our results suggest that the real-space imaging capability of STM is not hindered by selected capping layers that protect phosphorus surfaces.
We investigate tunneling in metal-insulator-metal junctions employing few atomic layers of hexagonal boron nitride (hBN) as the insulating barrier. While the low-bias tunnel resistance increases nearly exponentially with barrier thickness, subtle features are seen in the current-voltage curves, indicating marked influence of the intrinsic defects present in the hBN insulator on the tunneling transport. In particular, single electron charging events are observed, which are more evident in thicker-barrier devices where direct tunneling is substantially low. Furthermore, we find that annealing the devices modifies the defect states and hence the tunneling signatures.
Scanning tunneling microscope (STM) has presented a revolutionary methodology to the nanoscience and nanotechnology. It enables imaging the topography of surfaces, mapping the distribution of electronic density of states, and manipulating individual atoms and molecules, all at the atomic resolution. In particular, the atom manipulation capability has evolved from fabricating individual nanostructures towards the scalable production of the atomic-sized devices bottom-up. The combination of precision synthesis and in situ characterization of the atomically precise structures has enabled direct visualization of many quantum phenomena and fast proof-of-principle testing of quantum device functions with real-time feedback to guide the improved synthesis. In this article, several representative examples are reviewed to demonstrate the recent development of atomic scale manipulation. Especially, the review focuses on the progress that address the quantum properties by design through the precise control of the atomic structures in several technologically relevant materials systems. Besides conventional STM manipulations and electronic structure characterization with single-probe STM, integration of multiple atomically precisely controlled probes in a multiprobe STM system vastly extends the capability of in situ characterization to a new dimension where the charge and spin transport behaviors can be examined from mesoscopic to atomic length scale. The automation of the atomic scale manipulation and the integration with the well-established lithographic processes would further push this bottom-up approach to a new level that combines reproducible fabrication, extraordinary programmability, and the ability to produce large-scale arrays of quantum structures.
Optically addressable spins in materials are important platforms for quantum technologies, such as repeaters and sensors. Identification of such systems in two-dimensional (2d) layered materials offers advantages over their bulk counterparts, as their reduced dimensionality enables more feasible on-chip integration into devices. Here, we report optically detected magnetic resonance (ODMR) from previously identified carbon-related defects in 2d hexagonal boron nitride (hBN). We show that single-defect ODMR contrast can be as strong as 6% and displays a magnetic-field dependence with both positive or negative sign per defect. This bipolarity can shed light into low contrast reported recently for ensemble ODMR measurements for these defects. Further, the ODMR lineshape comprises a doublet resonance, suggesting either low zero-field splitting or hyperfine coupling. Our results offer a promising route towards realising a room-temperature spin-photon quantum interface in hexagonal boron nitride.
145 - Sohee Park , Changwon Park , 2014
Among two-dimensional atomic crystals, hexagonal boron nitride (hBN) is one of the most remarkable materials to fabricate heterostructures revealing unusual properties. We perform first-principles calculations to determine whether intercalated metal atoms and vacancies can mediate interfacial coupling and influence the structural and electronic properties of the graphene/hBN heterostructure. Metal impurity atoms (Li, K, Cr, Mn, Co, and Cu) as extrinsic defects between the graphene and hBN sheets produce $n$-doped graphene. We also consider intrinsic vacancy defects and find that a boron monovacancy in hBN act as a magnetic dopant for graphene whereas a nitrogen monovacancy in hBN serves as a nonmagnetic dopant for graphene. In contrast, smallest triangular vacancy defects in hBN are unlikely to result in significant changes in the electronic transport of graphene. Our findings reveal that the hBN layer with some vacancies or metal impurities enhance the interlayer coupling in the graphene/hBN heterostructure with respect to charge doping and electron scattering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا