Do you want to publish a course? Click here

Zeeman-Splitting-Assisted Quantum Logic Spectroscopy of Trapped Ions

167   0   0.0 ( 0 )
 Added by Huanqian Loh
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a quantum logic scheme to detect atomic and molecular ions in different states of angular momentum based on their magnetic $g$-factors. The state-dependent magnetic $g$-factors mean that electronic, rotational or hyperfine states may be distinguished by their Zeeman splittings in a given magnetic field. Driving motional sidebands of a chosen Zeeman splitting enables reading out the corresponding state of angular momentum with an auxillary logic ion. As a proof-of-principle demonstration, we show that we can detect the ground electronic state of a ${^{174}}$Yb$^+$ ion using ${^{171}}$Yb$^+$ as the logic ion. Further, we can distinguish between the ${^{174}}$Yb$^+$ ion being in its ground electronic state versus the metastable ${^{2}}D_{3/2}$ state. We discuss the suitability of this scheme for the detection of rotational states in molecular ions.



rate research

Read More

The interaction between the electric dipole moment of a trapped molecular ion and the configuration of the confined Coulomb crystal couples the orientation of the molecule to its motion. We consider the practical feasibility of harnessing this interaction to initialize, process, and read out quantum information encoded in molecular ion qubits without optically illuminating the molecules. We present two schemes wherein a molecular ion can be entangled with a co-trapped atomic ion qubit, providing, among other things, a means for molecular state preparation and measurement. We also show that virtual phonon exchange can significantly boost range of the intermolecular dipole-dipole interaction, allowing strong coupling between widely-separated molecular ion qubits.
A mixed-species geometric phase gate has been proposed for implementing quantum logic spectroscopy on trapped ions that combines probe and information transfer from the spectroscopy to the logic ion in a single pulse. We experimentally realize this method, show how it can be applied as a technique for identifying transitions in currently intractable atoms or molecules, demonstrate its reduced temperature sensitivity, and observe quantum-enhanced frequency sensitivity when it is applied to multi-ion chains. Potential applications include improved readout of trapped-ion clocks and simplified error syndrome measurements for quantum error correction.
Precision spectroscopy of atomic systems is an invaluable tool for the advancement of our understanding of fundamental interactions and symmetries. Recently, highly charged ions (HCI) have been proposed for sensitive tests of physics beyond the Standard Model and as candidates for high-accuracy atomic clocks. However, the implementation of these ideas has been hindered by the parts-per-million level spectroscopic accuracies achieved to date. Here, we cool a trapped HCI to the lowest reported temperatures, and introduce coherent laser spectroscopy on HCI with an eight orders of magnitude leap in precision. We probe the forbidden optical transition in $^{40}$Ar$^{13+}$ at 441 nm using quantum-logic spectroscopy and measure both its excited-state lifetime and $g$-factor. Our work ultimately unlocks the potential of HCI, a large, ubiquitous atomic class, for quantum information processing, novel frequency standards, and highly sensitive tests of fundamental physics, such as searching for dark matter candidates or violations of fundamental symmetries.
Control over physical systems at the quantum level is a goal shared by scientists in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio frequency or microwave radiation because the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms motion. The field gradients are negligible at these frequencies for freely propagating fields; however, stronger gradients can be generated in the near-field of microwave currents in structures smaller than the free-space wavelength. In the experiments reported here, we coherently manipulate the internal quantum states of the ions on time scales of 20 ns. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation. We implement both operations through the magnetic fields from microwave currents in electrodes that are integrated into the micro-fabricated trap structure and create an entangled state with fidelity 76(3) %. This approach, where the quantum control mechanism is integrated into the trapping device in a scalable manner, can potentially benefit quantum information processing, simulation and spectroscopy.
Trapped atomic ions have proven to be one of the most promising candidates for the realization of quantum computation due to their long trapping times, excellent coherence properties, and exquisite control of the internal atomic states. Integrating ions (quantum memory) with photons (distance link) offers a unique path to large-scale quantum computation and long-distance quantum communication. In this article, we present a detailed review of the experimental implementation of a heralded photon-mediated quantum gate between remote ions, and the employment of this gate to perform a teleportation protocol between two ions separated by a distance of about one meter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا