Do you want to publish a course? Click here

Josephson magnetic rotary valve

273   0   0.0 ( 0 )
 Added by Alexander Golubov
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a control element for a Josephson spin valve. It is a complex Josephson device containing ferromagnetic (F) layer in the weak-link area consisting of two regions, representing $0$ and $pi$ Josephson junctions, respectively. The valves state is defined by mutual orientations of the F-layer magnetization vector and normal to the interface separating $0$ and $pi$ sections of the device. We consider possible implementation of the control element by introduction of a thin normal metal layer in a part of the device area. By means of theoretical simulations we study properties of the valves structure as well as its operation, revealing such advantages as simplicity of control, high characteristic frequency and good legibility of the basic states.



rate research

Read More

Motivated by the recent proposals for unconventional emergent physics in twisted bilayers of nodal superconductors, we study the peculiarities of the Josephson effect at the twisted interface between $d$-wave superconductors. We demonstrate that for clean interfaces with a twist angle $theta_0$ in the range $0^circ<theta_0<45^circ$ the critical current can exhibit nonmonotonic temperature dependence with a maximum at a nonzero temperature as well as a complex dependence on the twist angle at low temperatures. The former is shown to arise quite generically due to the contributions of the momenta around the gap nodes, which are negative for nonzero twist angles. It is demonstrated that these features reflect the geometry of the Fermi surface and are sensitive to the form of the momentum dependence of the tunneling at the twisted interface. Close to $theta_0=45^circ$ we find that the critical current does not vanish due to Cooper pair cotunneling, which leads to a transition to a time-reversal breaking topological superconducting $d+id$ phase. Weak interface roughness, quasiperiodicity, and inhomogeneity broaden the momentum dependence of the interlayer tunneling leading to a critical current $I_csim cos(2theta_0)$ with $cos(6theta_0)$ corrections. Furthermore, strong disorder at the interface is demonstrated to suppress the time-reversal breaking superconducting phase near $theta_0=45^circ$. Last, we provide a comprehensive theoretical analysis of experiments that can reveal the full current-phase relation for twisted superconductors close to $theta_0=45^circ$. In particular, we demonstrate the emergence of the Fraunhofer interference pattern near $theta_0=45^circ$, while accounting for realistic sample geometries, and show that its temperature dependence can yield unambiguous evidence of Cooper pair cotunneling, necessary for topological superconductivity.
Twisted bilayers of high-$T_c$ cuprate superconductors have been argued to form topological phases with spontaneously broken time reversal symmetry ${cal T}$ for certain twist angles. With the goal of helping to identify unambiguous signatures of these topological phases in transport experiments, we theoretically investigate a suite of Josephson phenomena between twisted layers. We find an unusual non-monotonic temperature dependence of the critical current at intermediate twist angles which we attribute to the unconventional sign structure of the $d$-wave order parameter. The onset of the ${cal T}$-broken phase near $45^circ$ twist is marked by a crossover from the conventional $2pi$-periodic Josephson relation $J(varphi)simeq J_csin{varphi}$ to a $pi$-periodic function as the single-pair tunneling becomes dominated by a second order process that involves two Cooper pairs. Despite this fundamental change, the critical current remains a smooth function of the twist angle $theta$ and temperature $T$ implying that a measurement of $J_c$ alone will not be a litmus test for the ${cal T}$-broken phase. To obtain clear signatures of the ${cal T}$-broken phase one must measure $J_c$ in the presence of an applied magnetic field or radio-frequency drive, where the resulting Fraunhofer patterns and Shapiro steps are altered in a characteristic manner. We discuss these results in light of recent experiments on twisted bilayers of the high-$T_c$ cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$.
We present the results of theoretical study of Current-Phase Relations (CPR) in Josephson junctions of SIsFS type, where S is a bulk superconductor and IsF is a complex weak link consisting of a superconducting film s, a metallic ferromagnet F and an insulating barrier I. We calculate the relationship between Josephson current and phase difference. At temperatures close to critical, calculations are performed analytically in the frame of the Ginsburg-Landau equations. At low temperatures numerical method is developed to solve selfconsistently the Usadel equations in the structure. We demonstrate that SIsFS junctions have several distinct regimes of supercurrent transport and we examine spatial distributions of the pair potential across the structure in different regimes. We study the crossover between these regimes which is caused by shifting the location of a weak link from the tunnel barrier I to the F-layer. We show that strong deviations of the CPR from sinusoidal shape occur even in a vicinity of Tc, and these deviations are strongest in the crossover regime. We demonstrate the existence of temperature-induced crossover between 0 and pi states in the contact and show that smoothness of this transition strongly depends on the CPR shape.
The transmission of Cooper pairs between two weakly coupled superconductors produces a superfluid current and a phase difference; the celebrated Josephson effect. Because of time-reversal and parity symmetries, there is no Josephson current without a phase difference between two superconductors. Reciprocally, when those two symmetries are broken, an anomalous supercurrent can exist in the absence of phase bias or, equivalently, an anomalous phase shift $varphi_0$ can exist in the absence of a superfluid current. We report on the observation of an anomalous phase shift $varphi_0$ in hybrid Josephson junctions fabricated with the topological insulator Bi$_2$Se$_3$ submitted to an in-plane magnetic field. This anomalous phase shift $varphi_0$ is observed directly through measurements of the current-phase relationship in a Josephson interferometer. This result provides a direct measurement of the spin-orbit coupling strength and open new possibilities for phase-controlled Josephson devices made from materials with strong spin-orbit coupling.
We demonstrate a Josephson junction with a weak link containing two ferromagnets, with perpendicular magnetic anisotropy and independent switching fields in which the critical current can be set by the mutual orientation of the two layers. Such pseudospin-valve Josephson junctions are a candidate cryogenic memory in an all superconducting computational scheme. Here, we use Pt/Co/Pt/CoB/Pt as the weak link of the junction with $d_text{Co} = 0.6$ nm, $d_text{CoB} = 0.3$ nm, and $d_text{Pt} = 5$ nm and obtain a $60%$ change in the critical current for the two magnetization configurations of the pseudospin-valve. Ferromagnets with perpendicular magnetic anisotropy have advantages over magnetization in-plane systems which have been exclusively considered to this point, as in principle the magnetization and magnetic switching of layers in the junction should not affect the in-plane magnetic flux.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا