Do you want to publish a course? Click here

The dynamical evolution of molecular clouds near the Galactic Centre - I. Orbital structure and evolutionary timeline

155   0   0.0 ( 0 )
 Added by Diederik Kruijssen
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We recently proposed that the star-forming potential of dense molecular clouds in the Central Molecular Zone (CMZ, i.e. the central few 100 pc) of the Milky Way is linked to their orbital dynamics, potentially giving rise to an absolute-time sequence of star-forming clouds. In this paper, we present an orbital model for the gas stream(s) observed in the CMZ. The model is obtained by integrating orbits in the observed gravitational potential and represents a good fit to the distribution of dense gas, reproducing all of its key properties. The orbit is also consistent with observational constraints not included in the fitting process, such as the velocities of Sgr B2 and the Arches and Quintuplet clusters. It differs from previous models: (1) the orbit is open rather than closed due to the extended mass distribution in the CMZ, (2) its orbital velocity is twice as high as in previous models, and (3) Sgr A$^*$ coincides with the focus of the (eccentric) orbit rather than being offset. Our orbital solution supports the scenario in which the dust ridge between G0.253+0.016 (the Brick) and Sgr B2 represents an absolute-time sequence of star-forming clouds, triggered by the tidal compression during their recent pericentre passage. We position the clouds on a common timeline and find that their pericentre passages occurred 0.30-0.74 Myr ago. Given their short free-fall times (0.3-0.4 Myr), the quiescent cloud G0.253+0.016 and the vigorously star-forming complex Sgr B2 are separated by a single free-fall time of evolution, implying that star formation proceeds rapidly once collapse has been initiated. We provide several quantitative predictions of our model and conclude with a discussion of the model in the Galactic context, highlighting its relation to large-scale gas accretion, the dynamics of the bar, the $x_2$ orbital family, and the origin of the Arches and Quintuplet clusters. (Abridged)



rate research

Read More

The evolution of molecular clouds in galactic centres is thought to differ from that in galactic discs due to a significant influence of the external gravitational potential. We present a set of numerical simulations of molecular clouds orbiting on the 100-pc stream of the Central Molecular Zone (the central $sim500$ pc of the Galaxy) and characterise their morphological and kinematic evolution in response to the background potential and eccentric orbital motion. We find that the clouds are shaped by strong shear and torques, by tidal and geometric deformation, and by their passage through the orbital pericentre. Within our simulations, these mechanisms control cloud sizes, aspect ratios, position angles, filamentary structure, column densities, velocity dispersions, line-of-sight velocity gradients, spin angular momenta, and kinematic complexity. By comparing these predictions to observations of clouds on the Galactic Centre dust ridge, we find that our simulations naturally reproduce a broad range of key observed morphological and kinematic features, which can be explained in terms of well-understood physical mechanisms. We argue that the accretion of gas clouds onto the central regions of galaxies, where the rotation curve turns over and the tidal field is fully compressive, is accompanied by transformative dynamical changes to the clouds, leading to collapse and star formation. This can generate an evolutionary progression of cloud collapse with a common starting point, which either marks the time of accretion onto the tidally-compressive region or of the most recent pericentre passage. Together, these processes may naturally produce the synchronised starbursts observed in numerous (extra)galactic nuclei.
152 - J. Rowles 2009
We are studying the column density distribution of all nearby giant molecular clouds. As part of this project we generated several all sky extinction maps. They are calculated using the median near infrared colour excess technique applied to data from the Two Micron All-Sky Survey (2MASS). Our large scale approach allows us to fit spline functions to extinction free regions in order to accurately determine the colour excess values. Two types of maps are presented: i) Maps with a constant noise and variable spatial resolution; ii) Maps with a constant spatial resolution and variable noise. Our standard Av map uses the nearest 49 stars to the centre of each pixel for the determination of the extinction. The one sigma variance is constant at 0.28mag Av in the entire map. The distance to the 49th nearest star varies from below 1arcmin near the Galactic Plane to about 10arcmin at the poles, but is below 5arcmin for all giant molecular clouds (|b|< 30degr). A comparison with existing large scale maps shows that our extinction values are systematically larger by 20% compared to Dobashi et al. and 40% smaller compared to Schlegel et al.. This is most likely caused by the applied star counting technique in Dobashi et al. and systematic uncertainties in the dust temperature and emissivity in Schlegel et al.. Our superior resolution allows us to detect more small scale high extinction cores compared to the other two maps.
We present a study of the three-dimensional structure of the molecular clouds in the Galactic Centre (GC) using CO emission and OH absorption lines. Two CO isotopologue lines, $^{12}$CO ($J$=1$rightarrow$0) and $^{13}$CO ($J$=1$rightarrow$0), and four OH ground-state transitions, surveyed by the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH), contribute to this study. We develop a novel method to calculate the OH column density, excitation temperature, and optical depth precisely using all four OH lines, and we employ it to derive a three-dimensional model for the distribution of molecular clouds in the GC for six slices in Galactic latitude. The angular resolution of the data is 15.5 arcmin, which at the distance of the GC (8.34 kpc) is equivalent to 38 pc. We find that the total mass of OH in the GC is in the range 2400-5100 Solar mass . The face-on view at a Galactic latitude of b = 0{deg} displays a bar-like structure with an inclination angle of 67.5 $pm$ 2.1{deg} with respect to the line of sight. No ring-like structure in the GC is evident in our data, likely due to the low spatial resolution of the CO and OH maps.
G+0.693-0.03 is a quiescent molecular cloud located within the Sagittarius B2 (Sgr B2) star-forming complex. Recent spectral surveys have shown that it represents one of the most prolific repositories of complex organic species in the Galaxy. The origin of such chemical complexity, along with the small-scale physical structure and properties of G+0.693-0.03, remains a mystery. In this paper, we report the study of multiple molecules with interferometric observations in combination with single-dish data in G+0.693-0.03. Despite the lack of detection of continuum source, we find small-scale (0.2 pc) structures within this cloud. The analysis of the molecular emission of typical shock tracers such as SiO, HNCO, and CH$_3$OH unveiled two molecular components, peaking at velocities of 57 and 75 km s$^{-1}$. They are found to be interconnected in both space and velocity. The position-velocity diagrams show features that match with the observational signatures of a cloud-cloud collision. Additionally, we detect three series of class rom{1} methanol masers known to appear in shocked gas, supporting the cloud-cloud collision scenario. From the maser emission we provide constraints on the gas kinetic temperatures ($sim$30-150 K) and H$_2$ densities (10$^4$-10$^5$ cm$^{-2}$). These properties are similar to those found for the starburst galaxy NGC253 also using class rom{1} methanol masers, suggested to be associated with a cloud-cloud collision. We conclude that shocks driven by the possible cloud-cloud collision is likely the most important mechanism responsible for the high level of chemical complexity observed in G+0.693-0.03.
Measuring isotopic ratios is a sensitive technique used to obtain information on stellar nucleosynthesis and chemical evolution. We present measurements of the carbon and sulphur abundances in the interstellar medium of the central region of our Galaxy. The selected targets are the +50km/s Cloud and several l.o.s. clouds towards Sgr B2(N). Towards the +50km/s Cloud, we observed the J=2-1 rotational transitions of CS, C34S, 13CS, C33S, and 13C34S, and the J=3-2 transitions of CS and C34S with the IRAM-30m telescope, as well as the J=6-5 transitions of C34S and 13CS with the APEX 12m telescope, all in emission. The J=2-1 rotational transitions of CS, C34S, 13CS, and 13C34S were observed with ALMA in the envelope of Sgr B2(N), with those of CS and C34S also observed in the l.o.s. clouds towards Sgr B2(N), all in absorption. In the +50km/s Cloud we derive a 12C13C isotopic ratio of ~22.1, that leads, with the measured 13CS/C34S line intensity ratio, to a 32S/34S ratio of 16.3+3.0-2.4. We also derive the 32S/34S isotopic ratio more directly from the two isotopologues 13CS and 13C34S, which leads to an independent 32S/34S estimation of 16.3+2.1-1.7 and 17.9+-5.0 for the +50km/s Cloud and Sgr B2(N), respectively. We also obtain a 34S/33S ratio of ~4.3 in the +50 km/s Cloud. Previous studies observed a decreasing trend in the 32S/34S isotopic ratios when approaching the Galactic centre. Our result indicates a termination of this tendency at least at a galactocentric distance of 130-30+60 pc. This is at variance with findings based on 12C/13C, 14N/15N and 18O/17O isotope ratios, where the above-mentioned trend is observed to continue right to the central molecular zone. This can indicate a drop in the production of massive stars at the Galactic centre, in the same line as recent metallicity gradient studies, and opens the work towards a comparison with Galactic and stellar evolution models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا