No Arabic abstract
G+0.693-0.03 is a quiescent molecular cloud located within the Sagittarius B2 (Sgr B2) star-forming complex. Recent spectral surveys have shown that it represents one of the most prolific repositories of complex organic species in the Galaxy. The origin of such chemical complexity, along with the small-scale physical structure and properties of G+0.693-0.03, remains a mystery. In this paper, we report the study of multiple molecules with interferometric observations in combination with single-dish data in G+0.693-0.03. Despite the lack of detection of continuum source, we find small-scale (0.2 pc) structures within this cloud. The analysis of the molecular emission of typical shock tracers such as SiO, HNCO, and CH$_3$OH unveiled two molecular components, peaking at velocities of 57 and 75 km s$^{-1}$. They are found to be interconnected in both space and velocity. The position-velocity diagrams show features that match with the observational signatures of a cloud-cloud collision. Additionally, we detect three series of class rom{1} methanol masers known to appear in shocked gas, supporting the cloud-cloud collision scenario. From the maser emission we provide constraints on the gas kinetic temperatures ($sim$30-150 K) and H$_2$ densities (10$^4$-10$^5$ cm$^{-2}$). These properties are similar to those found for the starburst galaxy NGC253 also using class rom{1} methanol masers, suggested to be associated with a cloud-cloud collision. We conclude that shocks driven by the possible cloud-cloud collision is likely the most important mechanism responsible for the high level of chemical complexity observed in G+0.693-0.03.
We performed a search of star-forming sites influenced by external factors, such as SNRs, HII regions, and cloud-cloud collisions, to understand the star-forming activity in the Galactic center region using the NRO Galactic Center Survey in SiO $v=0, J=2-1$, H$^{13}$CO$^+ J=1-0$, and CS $J=1-0$ emission lines obtained by the Nobeyama 45-m telescope. We found a half-shell like feature (HSF) with a high integrated line intensity ratio of $ int T_{ mathrm B}$(SiO $v=0, J=2-1$)$dv$/$ int T_{ mathrm B}$(H$^{13}$CO$^+ J=1-0$)$dv sim6-8$ in the 50 km s$^{-1}$ molecular cloud, which is a most conspicuous molecular cloud in the region and harbors an active star-forming site seen as several compact HII regions. The high ratio in the HSF indicates that the cloud contains huge shocked molecular gas. The HSF is also seen as a half-shell feature in the position-velocity diagram. A hypothesis explaining the chemical and kinetic properties of the HSF is that the feature is originated by a cloud-cloud collision (CCC). We analyzed the CS $J=1-0$ emission line data obtained by Nobeyama Millimeter Array to reveal the relation between the HSF and the molecular cloud cores in the cloud. We made a cumulative core mass function (CMF) of the molecular cloud cores within the HSF. The CMF in the CCC region is not truncated at least up to $ sim2500M_ odot$ although the CMF of the non-CCC region reaches the upper limit of $ sim1500M_ odot$. Most massive molecular cores with $M_{ mathrm{gas}}>750 M_{ odot}$ are located only around the ridge of the HSF and adjoin the compact HII region. These may be a sign of massive star formation induced by CCC in the Galactic center region.
We performed a search of cloud-cloud collision (CCC) sites in the Sagittarius A molecular cloud (SgrAMC) based on the survey observations using the Nobeyama 45-m telescope in the C$^{32}$S $J=1-0$ and SiO $v=0~J=2-1$ emission lines. We found candidates being abundant in shocked molecular gas in the Galactic Center Arc (GCA). One of them, M0.014-0.054, is located in the mapping area of our previous ALMA mosaic observation. We explored the structure and kinematics of M0.014-0.054 in the C$^{32}$S $J=2-1$, C$^{34}$S $J=2-1$, SiO $v=0~J=2-1$, H$^{13}$CO$^+ J=1-0$, and SO $N,J=2,2-1,1$ emission lines and fainter emission lines. M0.014-0.054 is likely formed by the CCC between the vertical molecular filaments (VP) of the GCA, and other molecular filaments along Galactic longitude. The bridging features between these colliding filaments on the PV diagram are found, which are the characteristics expected in CCC sites. We also found continuum compact objects in M0.014-0.054, which have no counterpart in the H42$alpha$ recombination line. They are detected in the SO emission line, and would be Hot Molecular Core (HMC)s. Because the LTE mass of one HMC is larger than the virial mass, it is bound gravitationally. This is also detected in the CCS emission line. The embedded star would be too young to ionize the surrounding molecular cloud. The VP is traced by poloidal magnetic field. Because the strength of the magnetic field is estimated to be $sim m$Gauss using the CF method, the VP is supported against fragmentation. The star formation in the HMC of M0.014-0.054 is likely induced by the CCC between the stable filaments, which may be a common mechanism in the SgrAMC.
We carried out new CO ($J=$1-0, 2-1 and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s$^{-1}$ velocity separation, which is continuous over 3 degrees along the plane. In NGC 6334 the two components show similar two-peaked intensity distributions toward the young HII regions and are linked by a bridge feature. In NGC 6357 we found spatially complementary distribution between the two velocity components as well as a bridge feature in velocity. Based on these results we hypothesize that the two clouds in the two regions collided with each other in the past few Myr and triggered formation of the starbursts over $sim$ 100 pc. We suggest that the formation of the starbursts happened toward the collisional region of $sim$ 10-pc extents with initial high molecular column densities. For NGC 6334 we present a scenario which includes spatial variation of the colliding epoch due to non-uniform cloud separation. The scenario possibly explains the apparent age difference among the young O stars in NGC 6334 raging from $10^4$ yrs to $10^6$ yrs; the latest collision happened within $10^5$ yrs toward the youngest stars in NGC 6334 I(N) and I which exhibit molecular outflows without HII regions. For NGC 6357 the O stars were formed a few Myrs ago, and the cloud dispersal by the O stars is significant. We conclude that cloud-cloud collision offers a possible explanation of the min-starburst over a 100-pc scale.
We performed new comprehensive $^{13}$CO($J$=2--1) observations toward NGC 2024, the most active star forming region in Orion B, with an angular resolution of $sim$100 obtained with NANTEN2. We found that the associated cloud consists of two independent velocity components. The components are physically connected to the H{sc ii} region as evidenced by their close correlation with the dark lanes and the emission nebulosity. The two components show complementary distribution with a displacement of $sim$0.6 pc. Such complementary distribution is typical to colliding clouds discovered in regions of high-mass star formation. We hypothesize that a cloud-cloud collision between the two components triggered the formation of the late O-type stars and early B stars localized within 0.3 pc of the cloud peak. The duration time of the collision is estimated to be 0.3 million years from a ratio of the displacement and the relative velocity $sim$3 km s$^{-1}$ corrected for probable projection. The high column density of the colliding cloud $sim$10$^{23}$ cm$^{-2}$ is similar to those in the other high-mass star clusters in RCW 38, Westerlund 2, NGC 3603, and M42, which are likely formed under trigger by cloud-cloud collision. The present results provide an additional piece of evidence favorable to high-mass star formation by a major cloud-cloud collision in Orion.
We analyzed the NANTEN2 13CO (J=2-1 and 1-0) datasets in NGC 2024. We found that the cloud consists of two velocity components, whereas the cloud shows mostly single-peaked CO profiles. The two components are physically connected to the HII region as evidenced by their close correlation with the dark lanes and the emission nebulosity. The two components show complementary distribution with a displacement of 0.4 pc. Such complementary distribution is typical to colliding clouds discovered in regions of high-mass star formation. We hypothesize that cloud-cloud collision between the two components triggered the formation of the late O stars and early B stars localized within 0.3 pc of the cloud peak. The collision timescale is estimated to be ~ 10^5 yrs from a ratio of the displacement and the relative velocity 3-4 km s-1 corrected for probable projection. The high column density of the colliding cloud 1023 cm-2 is similar to those in the other massive star clusters in RCW 38, Westerlund 2, NGC 3603, and M42, which are likely formed under trigger by cloud-cloud collision. The present results provide an additional piece of evidence favorable to high-mass star formation by a major cloud-cloud collision in Orion.