Do you want to publish a course? Click here

Understanding Deep Image Representations by Inverting Them

109   0   0.0 ( 0 )
 Added by Aravindh Mahendran
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Image representations, from SIFT and Bag of Visual Words to Convolutional Neural Networks (CNNs), are a crucial component of almost any image understanding system. Nevertheless, our understanding of them remains limited. In this paper we conduct a direct analysis of the visual information contained in representations by asking the following question: given an encoding of an image, to which extent is it possible to reconstruct the image itself? To answer this question we contribute a general framework to invert representations. We show that this method can invert representations such as HOG and SIFT more accurately than recent alternatives while being applicable to CNNs too. We then use this technique to study the inverse of recent state-of-the-art CNN image representations for the first time. Among our findings, we show that several layers in CNNs retain photographically accurate information about the image, with different degrees of geometric and photometric invariance.

rate research

Read More

67 - Ang Cao , Justin Johnson 2021
As a core problem in computer vision, the performance of object detection has improved drastically in the past few years. Despite their impressive performance, object detectors suffer from a lack of interpretability. Visualization techniques have been developed and widely applied to introspect the decisions made by other kinds of deep learning models; however, visualizing object detectors has been underexplored. In this paper, we propose using inversion as a primary tool to understand modern object detectors and develop an optimization-based approach to layout inversion, allowing us to generate synthetic images recognized by trained detectors as containing a desired configuration of objects. We reveal intriguing properties of detectors by applying our layout inversion technique to a variety of modern object detectors, and further investigate them via validation experiments: they rely on qualitatively different features for classification and regression; they learn canonical motifs of commonly co-occurring objects; they use diff erent visual cues to recognize objects of varying sizes. We hope our insights can help practitioners improve object detectors.
Superpixel algorithms are a common pre-processing step for computer vision algorithms such as segmentation, object tracking and localization. Many superpixel methods only rely on colors features for segmentation, limiting performance in low-contrast regions and applicability to infrared or medical images where object boundaries have wide appearance variability. We study the inclusion of deep image features in the SLIC superpixel algorithm to exploit higher-level image representations. In addition, we devise a trainable superpixel algorithm, yielding an intermediate domain-specific image representation that can be applied to different tasks. A clustering-based superpixel algorithm is transformed into a pixel-wise classification task and superpixel training data is derived from semantic segmentation datasets. Our results demonstrate that this approach is able to improve superpixel quality consistently.
We propose a novel approach for instance-level image retrieval. It produces a global and compact fixed-length representation for each image by aggregating many region-wise descriptors. In contrast to previous works employing pre-trained deep networks as a black box to produce features, our method leverages a deep architecture trained for the specific task of image retrieval. Our contribution is twofold: (i) we leverage a ranking framework to learn convolution and projection weights that are used to build the region features; and (ii) we employ a region proposal network to learn which regions should be pooled to form the final global descriptor. We show that using clean training data is key to the success of our approach. To that aim, we use a large scale but noisy landmark dataset and develop an automatic cleaning approach. The proposed architecture produces a global image representation in a single forward pass. Our approach significantly outperforms previous approaches based on global descriptors on standard datasets. It even surpasses most prior works based on costly local descriptor indexing and spatial verification. Additional material is available at www.xrce.xerox.com/Deep-Image-Retrieval.
The rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach near-human semantic classification at tasks such as object and scene recognition. Here we describe the Places Database, a repository of 10 million scene photographs, labeled with scene semantic categories and attributes, comprising a quasi-exhaustive list of the types of environments encountered in the world. Using state of the art Convolutional Neural Networks, we provide impressive baseline performances at scene classification. With its high-coverage and high-diversity of exemplars, the Places Database offers an ecosystem to guide future progress on currently intractable visual recognition problems.
Motivated by recent work on deep neural network (DNN)-based image compression methods showing potential improvements in image quality, savings in storage, and bandwidth reduction, we propose to perform image understanding tasks such as classification and segmentation directly on the compressed representations produced by these compression methods. Since the encoders and decoders in DNN-based compression methods are neural networks with feature-maps as internal representations of the images, we directly integrate these with architectures for image understanding. This bypasses decoding of the compressed representation into RGB space and reduces computational cost. Our study shows that accuracies comparable to networks that operate on compressed RGB images can be achieved while reducing the computational complexity up to $2times$. Furthermore, we show that synergies are obtained by jointly training compression networks with classification networks on the compressed representations, improving image quality, classification accuracy, and segmentation performance. We find that inference from compressed representations is particularly advantageous compared to inference from compressed RGB images for aggressive compression rates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا