No Arabic abstract
The rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach near-human semantic classification at tasks such as object and scene recognition. Here we describe the Places Database, a repository of 10 million scene photographs, labeled with scene semantic categories and attributes, comprising a quasi-exhaustive list of the types of environments encountered in the world. Using state of the art Convolutional Neural Networks, we provide impressive baseline performances at scene classification. With its high-coverage and high-diversity of exemplars, the Places Database offers an ecosystem to guide future progress on currently intractable visual recognition problems.
Nowadays it is prevalent to take features extracted from pre-trained deep learning models as image representations which have achieved promising classification performance. Existing methods usually consider either object-based features or scene-based features only. However, both types of features are important for complex images like scene images, as they can complement each other. In this paper, we propose a novel type of features -- hybrid deep features, for scene images. Specifically, we exploit both object-based and scene-based features at two levels: part image level (i.e., parts of an image) and whole image level (i.e., a whole image), which produces a total number of four types of deep features. Regarding the part image level, we also propose two new slicing techniques to extract part based features. Finally, we aggregate these four types of deep features via the concatenation operator. We demonstrate the effectiveness of our hybrid deep features on three commonly used scene datasets (MIT-67, Scene-15, and Event-8), in terms of the scene image classification task. Extensive comparisons show that our introduced features can produce state-of-the-art classification accuracies which are more consistent and stable than the results of existing features across all datasets.
Deep learning methods for image quality assessment (IQA) are limited due to the small size of existing datasets. Extensive datasets require substantial resources both for generating publishable content and annotating it accurately. We present a systematic and scalable approach to creating KonIQ-10k, the largest IQA dataset to date, consisting of 10,073 quality scored images. It is the first in-the-wild database aiming for ecological validity, concerning the authenticity of distortions, the diversity of content, and quality-related indicators. Through the use of crowdsourcing, we obtained 1.2 million reliable quality ratings from 1,459 crowd workers, paving the way for more general IQA models. We propose a novel, deep learning model (KonCept512), to show an excellent generalization beyond the test set (0.921 SROCC), to the current state-of-the-art database LIVE-in-the-Wild (0.825 SROCC). The model derives its core performance from the InceptionResNet architecture, being trained at a higher resolution than previous models (512x384). Correlation analysis shows that KonCept512 performs similar to having 9 subjective scores for each test image.
The existing image feature extraction methods are primarily based on the content and structure information of images, and rarely consider the contextual semantic information. Regarding some types of images such as scenes and objects, the annotations and descriptions of them available on the web may provide reliable contextual semantic information for feature extraction. In this paper, we introduce novel semantic features of an image based on the annotations and descriptions of its similar images available on the web. Specifically, we propose a new method which consists of two consecutive steps to extract our semantic features. For each image in the training set, we initially search the top $k$ most similar images from the internet and extract their annotations/descriptions (e.g., tags or keywords). The annotation information is employed to design a filter bank for each image category and generate filter words (codebook). Finally, each image is represented by the histogram of the occurrences of filter words in all categories. We evaluate the performance of the proposed features in scene image classification on three commonly-used scene image datasets (i.e., MIT-67, Scene15 and Event8). Our method typically produces a lower feature dimension than existing feature extraction methods. Experimental results show that the proposed features generate better classification accuracies than vision based and tag based features, and comparable results to deep learning based features.
Attention maps are a popular way of explaining the decisions of convolutional networks for image classification. Typically, for each image of interest, a single attention map is produced, which assigns weights to pixels based on their importance to the classification. A single attention map, however, provides an incomplete understanding since there are often many other maps that explain a classification equally well. In this paper, we introduce structured attention graphs (SAGs), which compactly represent sets of attention maps for an image by capturing how different combinations of image regions impact a classifiers confidence. We propose an approach to compute SAGs and a visualization for SAGs so that deeper insight can be gained into a classifiers decisions. We conduct a user study comparing the use of SAGs to traditional attention maps for answering counterfactual questions about image classifications. Our results show that the users are more correct when answering comparative counterfactual questions based on SAGs compared to the baselines.
Deep Convolutional Neural Networks (CNNs) have long been the architecture of choice for computer vision tasks. Recently, Transformer-based architectures like Vision Transformer (ViT) have matched or even surpassed ResNets for image classification. However, details of the Transformer architecture -- such as the use of non-overlapping patches -- lead one to wonder whether these networks are as robust. In this paper, we perform an extensive study of a variety of different measures of robustness of ViT models and compare the findings to ResNet baselines. We investigate robustness to input perturbations as well as robustness to model perturbations. We find that when pre-trained with a sufficient amount of data, ViT models are at least as robust as the ResNet counterparts on a broad range of perturbations. We also find that Transformers are robust to the removal of almost any single layer, and that while activations from later layers are highly correlated with each other, they nevertheless play an important role in classification.