No Arabic abstract
We introduce the notion of functionally compact sets into the theory of nonlinear generalized functions in the sense of Colombeau. The motivation behind our construction is to transfer, as far as possible, properties enjoyed by standard smooth functions on compact sets into the framework of generalized functions. Based on this concept, we introduce spaces of compactly supported generalized smooth functions that are close analogues to the test function spaces of distribution theory. We then develop the topological and functional analytic foundations of these spaces.
We tackle the problem of finding a suitable categorical framework for generalized functions used in mathematical physics for linear and non-linear PDEs. We are looking for a Cartesian closed category which contains both Schwartz distributions and Colombeau generalized functions as natural objects. We study Frolicher spaces, diffeological spaces and functionally generated spaces as frameworks for generalized functions. The latter are similar to Frolicher spaces, but starting from locally defined functionals. Functionally generated spaces strictly lie between Frolicher spaces and diffeological spaces, and they form a complete and cocomplete Cartesian closed category. We deeply study functionally generated spaces (and Frolicher spaces) as a framework for Schwartz distributions, and prove that in the category of diffeological spaces, both the special and the full Colombeau algebras are smooth differential algebras, with a smooth embedding of Schwartz distributions and smooth pointwise evaluations of Colombeau generalized functions.
Generalized smooth functions are a possible formalization of the original historical approach followed by Cauchy, Poisson, Kirchhoff, Helmholtz, Kelvin, Heaviside, and Dirac to deal with generalized functions. They are set-theoretical functions defined on a natural non-Archimedean ring, and include Colombeau generalized functions (and hence also Schwartz distributions) as a particular case. One of their key property is the closure with respect to composition. We review the theory of generalized smooth functions and prove both the local and some global inverse function theorems.
The main aim of the present work is to arrive at a mathematical theory close to the historically original conception of generalized functions, i.e. set theoretical functions defined on, and with values in, a suitable ring of scalars and sharing a number of fundamental properties with smooth functions, in particular with respect to composition and nonlinear operations. This is how they are still used in informal calculations in Physics. We introduce a category of generalized functions as smooth set-theoretical maps on (multidimensional) points of a ring of scalars containing infinitesimals and infinities. This category extends Schwartz distributions. The calculus of these generalized functions is closely related to classical analysis, with point values, composition, non-linear operations and the generalization of several classical theorems of calculus. Finally, we extend this category of generalized functions into a Grothendieck topos of sheaves over a concrete site. This topos hence provides a suitable framework for the study of spaces and functions with singularities. In this first paper, we present the basic theory; subsequent ones will be devoted to the resulting theory of ODE and PDE.
New classes of generalized Nevanlinna functions, which under multiplication with an arbitrary fixed symmetric rational function remain generalized Nevanlinna functions, are introduced. Characterizations for these classes of functions are established by connecting the canonical factorizations of the product function and the original generalized Nevanlinna function in a constructive manner. Also a detailed functional analytic treatment of these classes of functions is carried out by investigating the connection between the realizations of the product function and the original function. The operator theoretic treatment of these realizations is based on the notions of rigged spaces, boundary triplets, and associated Weyl functions.
We present an extension of some results of higher order calculus of variations and optimal control to generalized functions. The framework is the category of generalized smooth functions, which includes Schwartz distributions, while sharing many nonlinear properties with ordinary smooth functions. We prove the higher order Euler-Lagrange equations, the DAlembert principle in differential form, the du Bois-Reymond optimality condition and the Noethers theorem. We start the theory of optimal control proving a weak form of the Pontryagin maximum principle and the Noethers theorem for optimal control. We close with a study of a singularly variable length pendulum, oscillations damped by two media and the Pais-Uhlenbeck oscillator with singular frequencies.