Do you want to publish a course? Click here

Inverse Function Theorems for Generalized Smooth Functions

85   0   0.0 ( 0 )
 Added by Michael Kunzinger
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Generalized smooth functions are a possible formalization of the original historical approach followed by Cauchy, Poisson, Kirchhoff, Helmholtz, Kelvin, Heaviside, and Dirac to deal with generalized functions. They are set-theoretical functions defined on a natural non-Archimedean ring, and include Colombeau generalized functions (and hence also Schwartz distributions) as a particular case. One of their key property is the closure with respect to composition. We review the theory of generalized smooth functions and prove both the local and some global inverse function theorems.



rate research

Read More

204 - Paolo Giordano , Enxin Wu 2014
We tackle the problem of finding a suitable categorical framework for generalized functions used in mathematical physics for linear and non-linear PDEs. We are looking for a Cartesian closed category which contains both Schwartz distributions and Colombeau generalized functions as natural objects. We study Frolicher spaces, diffeological spaces and functionally generated spaces as frameworks for generalized functions. The latter are similar to Frolicher spaces, but starting from locally defined functionals. Functionally generated spaces strictly lie between Frolicher spaces and diffeological spaces, and they form a complete and cocomplete Cartesian closed category. We deeply study functionally generated spaces (and Frolicher spaces) as a framework for Schwartz distributions, and prove that in the category of diffeological spaces, both the special and the full Colombeau algebras are smooth differential algebras, with a smooth embedding of Schwartz distributions and smooth pointwise evaluations of Colombeau generalized functions.
We consider a class of generalized nonexpansive mappings introduced by Karapinar [5] and seen as a generalization of Suzuki (C)-condition. We prove some weak and strong convergence theorems for approximating fixed points of such mappings under suitable conditions in uniformly convex Banach spaces. Our results generalize those of Khan and Suzuki [4] to the case of this kind of mappings and, in turn, are related to a famous convergence theorem of Reich [2] on nonexpansive mappings.
The main objective of this work is to study generalized Browders and Weyls theorems for the multiplication operators $L_A$ and $R_B$ and for the elementary operator $tau_{A,B}=L_AR_B$.
We present inequalities related to generalized matrix function for positive semidefinite block matrices. We introduce partial generalized matrix functions corresponding to partial traces and then provide an unified extension of the recent inequalities due to Choi [6], Lin [14] and Zhang et al. [5,19]. We demonstrate the applications of a positive semidefinite $3times 3$ block matrix, which motivates us to give a simple alternative proof of Dragomirs inequality and Kreins inequality.
We develop real Paley-Wiener theorems for classes ${mathcal S}_omega$ of ultradifferentiable functions and related $L^{p}$-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor transform and give a full characterization in terms of Fourier and Wigner transforms for several variables of a Paley-Wiener theorem in this general setting, which is new in the literature. We also analyze this type of results when the support of the function is not compact using polynomials. Some examples are given.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا