Do you want to publish a course? Click here

Semiclassical shell-structure moment of inertia within the phase-space approach

93   0   0.0 ( 0 )
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The moment of inertia for nuclear collective rotations was derived within the semiclassical approach based on the cranking model and the Strutinsky shell-correction method by using the non-perturbative periodic-orbit theory in the phase space variables. This moment of inertia for adiabatic (statistical-equilibrium) rotations can be approximated by the generalized rigid-body moment of inertia accounting for the shell corrections of the particle density. A semiclassical phase-space trace formula allows to express quite accurately the shell components of the moment of inertia in terms of the free-energy shell corrections for integrable and partially chaotic Fermi systems, in good agreement with the quantum calculations.



rate research

Read More

We study the equilibration and relaxation processes within the time-dependent Hartree-Fock approach using the Wigner distribution function. On the technical side we present a geometrically unrestricted framework which allows us to calculate the full six-dimensional Wigner distribution function. With the removal of geometrical constraints, we are now able to extend our previous phase-space analysis of heavy-ion collisions in the reaction plane to unrestricted mean-field simulations of nuclear matter on a three-dimensional Cartesian lattice. From the physical point of view we provide a quantitative analysis on the stopping power in TDHF. This is linked to the effect of transparency. For the medium-heavy $^{40}$Ca+$^{40}$Ca system we examine the impact of different parametrizations of the Skyrme force, energy-dependence, and the significance of extra time-odd terms in the Skyrme functional. For the first time, transparency in TDHF is observed for a heavy system, $^{24}$Mg+$^{208}$Pb.
An essential property of magnetic devices is the relaxation rate in magnetic switching which strongly depends on the energy dissipation and magnetic inertia of the magnetization dynamics. Both parameters are commonly taken as a phenomenological entities. However very recently, a large effort has been dedicated to obtain Gilbert damping from first principles. In contrast, there is no ab initio study that so far has reproduced measured data of magnetic inertia in magnetic materials. In this letter, we present and elaborate on a theoretical model for calculating the magnetic moment of inertia based on the torque-torque correlation model. Particularly, the method has been applied to bulk bcc Fe, fcc Co and fcc Ni in the framework of the tight-binding approximation and the numerical values are comparable with recent experimental measurements. The theoretical results elucidate the physical origin of the moment of inertia based on the electronic structure. Even though the moment of inertia and damping are produced by the spin-orbit coupling, our analysis shows that they are caused by undergo different electronic structure mechanisms.
The cluster $^4rm He+Lambda+rm n$ model is applied to describe the $^6_Lambda$He hypernucleus. The consideration is based on the configuration space Faddeev equations for a system of non-identical particles. A set of the pair potentials includes the OBE simulating (NSC97f) model for the $Lambda rm n$ interaction and the phenomenological potentials for the $alphaLambda$ and $alpha rm n$ interactions. We calculated energies of spin (1$^-$,2$^-$) doublet. For the 2$^-$ excitation energy, the obtained value is 0.18 MeV. The hyperon binding energy of the bound 1$^-$ state is less than the experimental value, which may be an evidence for violation of the exact three-body cluster structure.
This paper discusses the derivation of an effective shell-model hamiltonian starting from a realistic nucleon-nucleon potential by way of perturbation theory. More precisely, we present the state of the art of this approach when the starting point is the perturbative expansion of the Q-box vertex function. Questions arising from diagrammatics, intermediate-states and order-by-order convergences, and their dependence on the chosen nucleon-nucleon potential, are discussed in detail, and the results of numerical applications for the p-shell model space starting from chiral next-to-next-to-next-to-leading order potentials are shown. Moreover, an alternative graphical method to derive the effective hamiltonian, based on the Z-box vertex function recently introduced by Suzuki et al., is applied to the case of a non-degenerate (0+2) hbaromega model space. Finally, our shell-model results are compared with the exact ones obtained from no-core shell-model calculations.
In nuclear structure calculations, the choice of a limited model space, due to computational needs, leads to the necessity to renormalize the Hamiltonian as well as any transition operator. Here, we present a study of the renormalization procedure and effects of the Gamow-Teller operator within the framework of the realistic shell model. Our effective shell-model operators are obtained, starting from a realistic nucleon-nucleon potential, by way of the many-body perturbation theory in order to take into account the degrees of freedom that are not explicitly included in the chosen model space. The theoretical effective shell-model Hamiltonian and transition operators are then employed in shell-model calculations, whose results are compared with data of Gamow-Teller transition strengths and double-beta half-lives for nuclei which are currently of interest for the detection of the neutrinoless double-beta decay process, in a mass interval ranging from A=48 up to A=136. We show that effective operators are able to reproduce quantitatively the spectroscopic and decay properties without resorting to an empirical quenching neither of the axial coupling constant gA, nor of the spin and orbital gyromagnetic factors. This should assess the reliability of applying present theoretical tools to this problematic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا