Do you want to publish a course? Click here

Precision measurement of branching fractions of $^{138}$Ba$^{+}$: Testing many body theories below one percent level

112   0   0.0 ( 0 )
 Added by Manas Mukherjee
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The branching fractions from the excited state $6P_{1/2}$ of singly charged barium ion has been measured with a precision $0.05%$ in an ion trap experiment. This measurement along with the known value of the upper state life-time allowed the determination of the dipole matrix elements for the transitions $P-S$ and $P-D$ to below one percent level. Therefore, for the first time it is now possible to compare the many body calculations of these matrix elements at level which is of significance to any parity non-conservation experiment on barium ion. Moreover, these dipole matrix elements are the most significant contributors to the parity violating matrix element between the $S-D$ transition, contributing upto $90%$ to the total. Our results on the dipole matrix elements are $3.306pm0.014$ and $3.036pm0.016$ for the $S-P$ and $P-D$ transitions respectively.



rate research

Read More

We present a measurement of the branching fractions for decay from the long-lived $5D_{5/2}$ level in Ba. The branching fraction for decay into the $6S_{1/2}$ ground state was found to be $0.846(25)_{mathrm{stat}}(4)_{mathrm{sys}}$. We also report an improved measurement of the $5D_{5/2}$ lifetime, $tau_{5D_{5/2}}=31.2(0.9)$~s. Together these measurements provide the first experimental determination of transition rates for decay out of the $5D_{5/2}$ level. The low ($<7 times 10^{-12}$~Torr) pressure in the ion trap in which these measurements were made simplified data acquisition and analysis. Comparison of the experimental results with theoretical predictions of the transition rates shows good agreement.
Measurement of the branching ratios for $6P_{1/2}$ decays to $6S_{1/2}$ and $5D_{3/2}$ in $^{138}$Ba$^+$ are reported with the decay probability from $6P_{1/2}$ to $5D_{3/2}$ measured to be $p=0.268177pm(37)_mathrm{stat}-(20)_mathrm{sys}$. This result differs from a recent report by $12sigma$. A detailed account of systematics is given and the likely source of the discrepancy is identified. The new value of the branching ratio is combined with a previous experimental results to give a new estimate of $tau=7.855(10),mathrm{ns}$ for the $6P_{1/2}$ lifetime. In addition, ratios of matrix elements calculated from theory are combined with experimental results to provide improved theoretical estimates of the $6P_{3/2}$ lifetime and the associated matrix elements.
Branching fractions for decays from the $P_{3/2}$ level in $^{138}$Ba$^+$ have been measured with a single laser-cooled ion. Decay probabilities to $S_{1/2}$, $D_{3/2}$ and $D_{5/2}$ are determined to be $0.741716(71)$, $0.028031(23)$ and $0.230253(61)$, respectively, which are an order of magnitude improvement over previous results. Our methodology only involves optical pumping and state detection, and is hence relatively free of systematic effects. Measurements are carried out in two different ways to check for consistency. Our analysis also includes a measurement of the $D_{5/2}$ lifetime, for which we obtain 30.14(40),s.
Measurement of the $^{138}$Ba$^+$ ${}^2S_{1/2} - {}^2D_{5/2}$ clock transition frequency and $D_{5/2}$ Lande $g_J$ factor are reported. The clock transition frequency $ u_{mathrm{Ba}^+}=170,126,432,449,333.31pm(0.39)_mathrm{stat}pm(0.29)_mathrm{sys},$Hz, is obtained with accuracy limited by the frequency calibration of the maser used as a reference oscillator. The Land{e} $g_J$-factor for the ${}^2D_{5/2}$ level is determined to be $g_{D}=1.200,367,39(24)$, which is a 30-fold improvement on previous measurements. The $g$-factor measurements are corrected for an ac-magnetic field from trap-drive-induced currents in the electrodes, and data taken over a range of magnetic fields underscores the importance of accounting for this systematic.
We present a precise measurement of the lifetime of the 6p 2P_1/2 excited state of a single trapped ytterbium ion (Yb+). A time-correlated single-photon counting technique is used, where ultrafast pulses excite the ion and the emitted photons are coupled into a single-mode optical fiber. By performing the measurement on a single atom with fast excitation and excellent spatial filtering, we are able to eliminate common systematics. The lifetime of the 6p 2P_1/2 state is measured to be 8.12 +/- 0.02 ns.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا