Do you want to publish a course? Click here

Precision measurements on the $^{138}$Ba$^+$ $6s^2S_{1/2}-5d^2D_{5/2}$ clock transition

168   0   0.0 ( 0 )
 Added by Kyle Arnold
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Measurement of the $^{138}$Ba$^+$ ${}^2S_{1/2} - {}^2D_{5/2}$ clock transition frequency and $D_{5/2}$ Lande $g_J$ factor are reported. The clock transition frequency $ u_{mathrm{Ba}^+}=170,126,432,449,333.31pm(0.39)_mathrm{stat}pm(0.29)_mathrm{sys},$Hz, is obtained with accuracy limited by the frequency calibration of the maser used as a reference oscillator. The Land{e} $g_J$-factor for the ${}^2D_{5/2}$ level is determined to be $g_{D}=1.200,367,39(24)$, which is a 30-fold improvement on previous measurements. The $g$-factor measurements are corrected for an ac-magnetic field from trap-drive-induced currents in the electrodes, and data taken over a range of magnetic fields underscores the importance of accounting for this systematic.



rate research

Read More

The zero crossing of the dynamic differential scalar polarizability of the $S_{1/2}-D_{5/2}$ clock transition in $^{138}$Ba$^+$ has been determined to be $459.1614(28),$THz. Together with previously determined matrix elements and branching ratios, this tightly constrains the dynamic differential scalar polarizability of the clock transition over a large wavelength range ($gtrsim 700,$nm). In particular it allows an estimate of the blackbody radiation shift of the clock transition at room temperature.
Measurement of the branching ratios for $6P_{1/2}$ decays to $6S_{1/2}$ and $5D_{3/2}$ in $^{138}$Ba$^+$ are reported with the decay probability from $6P_{1/2}$ to $5D_{3/2}$ measured to be $p=0.268177pm(37)_mathrm{stat}-(20)_mathrm{sys}$. This result differs from a recent report by $12sigma$. A detailed account of systematics is given and the likely source of the discrepancy is identified. The new value of the branching ratio is combined with a previous experimental results to give a new estimate of $tau=7.855(10),mathrm{ns}$ for the $6P_{1/2}$ lifetime. In addition, ratios of matrix elements calculated from theory are combined with experimental results to provide improved theoretical estimates of the $6P_{3/2}$ lifetime and the associated matrix elements.
In this paper, we have calculated parity nonconserving electric dipole transition amplitudes of the hyperfine components for the transitions between the ground and first excited states of $^{137}$Ba$^{+}$ and $^{87}$Sr$^{+}$ using sum-over-states technique. The results are presented to extract the constants associated with the nuclear spin dependent amplitudes from experimental measurements. The wavefunctions to calculate the most dominant part of the sums are constructed using highly correlated coupled-cluster theory based on the Dirac-Coulomb-Gaunt Hamiltonian.
Using recent high-precision measurements of electric dipole matrix elements of atomic cesium, we make an improved determination of the scalar ($alpha$) and vector ($beta$) polarizabilities of the cesium $6s ^2S_{1/2} rightarrow 7s ^2S_{1/2} $ transition calculated through a sum-over-states method. We report values of $alpha = -268.82 (30) a_0^3$ and $beta = 27.139 (42) a_0^3$ with the highest precision to date. We find a discrepancy between our value of $beta$ and the past preferred value, resulting in a significant shift in the value of the weak charge $Q_w$ of the cesium nucleus. Future work to resolve the differences in the polarizability will be critical for interpretation of parity non-conservation measurements in cesium, which have implications for physics beyond the Standard Model.
The lifetime of the metastable 5d$^2$D$_{5/2}$ state has been measured for a single trapped Ba$^+$ ion in a Paul trap in Ultra High Vacuum (UHV) in the 10$^{-10}$ mbar pressure range. A total of 5046 individual periods when the ion was shelved in this state have been recorded. A preliminary value $tau_{D_{5/2}} = 26.4(1.7)$~s is obtained through extrapolation to zero residual gas pressure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا