We theoretically investigate a weakly-interacting degenerate Bose gas coupled to an empty Markovian bath. We show that in the universal phononic limit the system evolves towards an asymptotic state where an emergent temperature is set by the quantum noise of the outcoupling process. For situations typically encountered in experiments, this mechanism leads to significant cooling. Such dissipative cooling supplements conventional evaporative cooling and dominates in settings where thermalization is highly suppressed, such as in a one-dimensional quasicondensate.
This review focuses on recent developments on studying synthetic spin-orbit (SO) coupling in ultracold atomic gases. Two types of SO coupling are discussed. One is Raman process induced coupling between spin and motion along one of the spatial directions, and the other is Rashba SO coupling. We emphasize their common features in both single-particle and two-body physics and their consequences in many-body physics. For instance, single particle ground state degeneracy leads to novel features of superfluidity and richer phase diagram; increased low-energy density-of-state enhances interaction effects; the absence of Galilean invariance and spin-momentum locking give rise to intriguing behaviors of superfluid critical velocity and novel quantum dynamics; and mixing of two-body singlet and triplet states yields novel fermion pairing structure and topological superfluids. With these examples, we show that investigating SO coupling in cold atom systems can enrich our understanding of basic phenomena such as superfluidity, provide a good platform for simulating condensed matter states such as topological superfluids, and more importantly, result in novel quantum systems such as SO coupled unitary Fermi gas or high spin quantum gases. Finally we also point out major challenges and possible future directions.
We present a novel approach to modeling dynamics of trapped, degenerate, weakly interacting Bose gases beyond the mean field limit. We transform a many-body problem to the interaction representation with respect to a suitably chosen part of the Hamiltonian and only then apply a multimode coherent-state ansatz. The obtained equations are almost as simple as the Gross--Pitaevskii equation, but our approach captures essential features of the quantum dynamics such as the collapse of coherence.
Although there is a broad consensus on the fact that critical behavior in stacked triangular Heisenberg antiferromagnets --an example of frustrated magnets with competing interactions-- is described by a Landau-Ginzburg-Wilson Hamiltonian with O(3)$times$O(2) symmetry, the nature of the phase transition in three dimensions is still debated. We show that spin-one Bose gases provide us with a simulator of the O(3)$times$O(2) model. Using a renormalization-group approach, we argue that the transition is weakly first order and shows pseudoscaling behavior, and give estimates of the pseudocritical exponent $ u$ in $^{87}$Rb, $^{41}$K and $^7$Li atom gases which can be tested experimentally.
We investigate collective oscillations of non-degenerate clouds of Rb-87 atoms as a function of density in an elongated magnetic trap. For the low-lying M=0 monopole-quadrupole shape oscillation we measure the oscillation frequencies and damping rates. At the highest densities the mean-free-path is smaller than the axial dimension of the sample, which corresponds to collisionally hydrodynamic conditions. This allows us to cover the cross-over from the collisionless to the hydrodynamic regime. The experimental results show good agreement with theory. We also analyze the influence of trap anharmonicities on the oscillations in relation to observed temperature dependencies of the dipole and quadrupole oscillation frequencies. We present convenient expressions to quantify these effects.
The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.