Do you want to publish a course? Click here

Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall

112   0   0.0 ( 0 )
 Added by Istvan Pusztai
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The core micro-instability characteristics of hybrid and baseline plasmas in a selected set of JET plasmas with carbon wall are investigated through local linear and non-linear and global linear gyro-kinetic simulations with the GYRO code [J. Candy and E. Belli, General Atomics Report GA-A26818 (2011)]. In particular, we study the role of plasma pressure on the micro-instabilities, and scan the parameter space for the important plasma parameters responsible for the onset and stabilization of the modes under experimental conditions. We find that a good core confinement due to strong stabilization of the micro-turbulence driven transport can be expected in the hybrid plasmas due to the stabilizing effect of the fast ion pressure that is more effective at the low magnetic shear of the hybrid discharges. While parallel velocity gradient destabilization is important for the inner core, at outer radii the hybrid plasmas may benefit from a strong quench of the turbulence transport by $mathbf{E}timesmathbf{B}$ rotation shear.



rate research

Read More

Reactor grade plasmas are likely to be fuelled by pellet injection. This technique transiently perturbs the profiles, driving the density profile hollow and flattening the edge temperature profile. After the pellet perturbation, the density and temperature profiles relax towards their quasi-steady-state shape. Microinstabilities influence plasma confinement and will play a role in determining the evolution of the profiles in pellet fuelled plasmas. In this paper we present the microstability analysis of pellet fuelled H-mode MAST plasmas. Taking advantage of the unique capabilities of the MAST Thomson scattering system and the possibility of synchronizing the eight lasers with the pellet injection, we were able to measure the evolution of the post-pellet electron density and temperature profiles with high temporal and spatial resolution. These profiles, together with ion temperature profiles measured using a charge exchange diagnostic, were used to produce equilibria suitable for microstability analysis of the equilibrium changes induced by pellet injection. This analysis, carried out using the local gyrokinetic code GS2, reveals that the microstability properties are extremely sensitive to the rapid and large transient excursions of the density and temperature profiles, which also change collisionality and beta e significantly in the region most strongly affected by the pellet ablation.
239 - Cecile Arnas 2006
The sputtering of inside wall components of tokamaks can lead to the injection of supersaturated vapour in the plasma edge. The resulting condensation favours the formation of clusters which can give rise to solid particulates by further accretion. Sputtering discharges are proposed to have highlight on the formation of carbonaceous dust observed in the tokamaks with graphite based wall components. The flux of the sputtered carbon atoms is evaluated in the conditions of our laboratory discharges as well as the evolution of their energy distribution. It is shown that a cooling mechanism occurs through collisions with the discharge argon atoms, leading to a nucleation phase. A comparison between the carbon structure of the resulting dust particles and a dust sample collected in the Tore Supra tokamak is proposed. The structural differences are discussed and can be correlated to specific plasma conditions.
This paper compares the gyrokinetic instabilities and transport in two representative JET pedestals, one (pulse 78697) from the JET configuration with a carbon wall (C) and another (pulse 92432) from after the installation of JETs ITER-like Wall (ILW). The discharges were selected for a comparison of JET-ILW and JET-C discharges with good confinement at high current (3 MA, corresponding also to low $rho_*$) and retain the distinguishing features of JET-C and JET-ILW, notably, decreased pedestal top temperature for JET-ILW. A comparison of the profiles and heating power reveals a stark qualitative difference between the discharges: the JET-ILW pulse (92432) requires twice the heating power, at a gas rate of $1.9 times 10^{22}e/s$, to sustain roughly half the temperature gradient of the JET-C pulse (78697), operated at zero gas rate. This points to heat transport as a central component of the dynamics limiting the JET-ILW pedestal and reinforces the following emerging JET-ILW pedestal transport paradigm, which is proposed for further examination by both theory and experiment. ILW conditions modify the density pedestal in ways that decrease the normalized pedestal density gradient $a/L_n$, often via an outward shift of the density pedestal. This is attributable to some combination of direct metal wall effects and the need for increased fueling to mitigate tungsten contamination. The modification to the density profile increases $eta = L_n/L_T$ , thereby producing more robust ion temperature gradient (ITG) and electron temperature gradient driven instability. The decreased pedestal gradients for JET-ILW (92432) also result in a strongly reduced $E times B$ shear rate, further enhancing the ion scale turbulence. Collectively, these effects limit the pedestal temperature and demand more heating power to achieve good pedestal performance.
The replacement of the JET carbon wall (C-wall) by a Be/W ITER-like wall (ILW) has affected the plasma energy confinement. To investigate this, experiments have been performed with both the C-wall and ILW to vary the heating power over a wide range for plasmas with different shapes.
The scaling of reaction yields in light ion fusion to low reaction energies is important for our understanding of stellar fuel chains and the development of future energy technologies. Experiments become progressively more challenging at lower reaction energies due to the exponential drop of fusion cross sections below the Coulomb barrier. We report on experiments where deuterium-deuterium (D-D) fusion reactions are studied in a pulsed plasma in the glow discharge regime using a benchtop apparatus. We model plasma conditions using particle-in-cell codes. Advantages of this approach are relatively high peak ion currents and current densities (0.1 to several A/cm^2) that can be applied to metal wire cathodes for several days. We detect neutrons from D-D reactions with scintillator-based detectors. For palladium targets, we find neutron yields as a function of cathode voltage that are over 100 times higher than yields expected for bare nuclei fusion at ion energies below 2 keV (center of mass frame). A possible explanation is a correction to the ion energy due to an electron screening potential of 1000+/-250 eV, which increases the probability for tunneling through the repulsive Coulomb barrier. Our compact, robust setup enables parametric studies of this effect at relatively low reaction energies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا