No Arabic abstract
Two-dimensional crystals of classical particles are very peculiar in that melting may occur in two steps, in a continuous fashion, via an intermediate hexatic fluid phase exhibiting quasi-long-range orientational order. On the other hand, three-dimensional spheres repelling each other through a fast-decaying bounded potential of generalized-exponential shape (GEM4 potential) can undergo freezing into cluster crystals, allowing for more that one particle per lattice site. We hereby study the combined effect of low spatial dimensionality and extreme potential softness, by investigating the phase behavior of the two-dimensional (2D) GEM4 system. Using a combination of density-functional theory and numerical free-energy calculations, we show that the 2D GEM4 system displays one ordinary and several cluster triangular-crystal phases, and that only the ordinary crystal first melts into a hexatic phase. Upon heating, the difference between the various cluster crystals fades away, eventually leaving a single undifferentiated cluster phase with a pressure-modulated site occupancy.
We present a Monte Carlo simulation study of the phase behavior of two-dimensional classical particles repelling each other through an isotropic Gaussian potential. As in the analogous three-dimensional case, a reentrant-melting transition occurs upon compression for not too high temperatures, along with a spectrum of water-like anomalies in the fluid phase. However, in two dimensions melting is a continuous two-stage transition, with an intermediate hexatic phase which becomes increasingly more definite as pressure grows. All available evidence supports the Kosterlitz-Thouless-Halperin-Nelson-Young scenario for this melting transition. We expect that such a phenomenology can be checked in confined monolayers of charge-stabilized colloids with a softened core.
We investigate the two-dimensional melting of biological tissues that are modeled by deformable polymeric particles with multi-body interactions described by the Voronoi model. We identify the existence of the intermediate hexatic phase in this system, and the critical scaling of the associated solid-hexatic phase transition with the critical exponent $ uapprox0.65$ for the divergence of the correlation length. Moreover, we clarify the discontinuous nature of the hexatic-liquid phase transition in this system. These findings are achieved by directly analyzing systems spatial configurations with two generic machine learning approaches developed in this work, dubbed scanning-probe via which the possible existence of intermediate phases can be efficiently detected, and information-concealing via which the critical scaling of the correlation length in the vicinity of generic continuous phase transition can be extracted. Our work provides new physical insights into the fundamental nature of the two-dimensional melting of biological tissues, and establishes a new type of generic toolbox to investigate fundamental properties of phase transitions in various complex systems.
We consider an off-lattice liquid crystal pair potential in strictly two dimensions. The potential is purely repulsive and short-ranged. Nevertheless, by means of a single parameter in the potential, the system is shown to undergo a first-order phase transition. The transition is studied using mean-field density functional theory, and shown to be of the isotropic-to-nematic kind. In addition, the theory predicts a large density gap between the two coexisting phases. The first-order nature of the transition is confirmed using computer simulation and finite-size scaling. Also presented is an analysis of the interface between the coexisting domains, including estimates of the line tension, as well as an investigation of anchoring effects.
The zero-temperature phase diagram of binary mixtures of particles interacting via a screened Coulomb pair potential is calculated as a function of composition and charge ratio. The potential energy obtained by a Lekner summation is minimized among a variety of candidate two-dimensional crystals. A wealth of different stable crystal structures is identified including $A,B,AB_2, A_2B, AB_4$ structures [$A$ $(B)$ particles correspond to large (small) charge.] Their elementary cells consist of triangular, square or rhombic lattices of the $A$ particles with a basis comprising various structures of $A$ and $B$ particles. For small charge asymmetry there are no intermediate crystals besides the pure $A$ and $B$ triangular crystals.
We study in this work the dynamics of a collection of identical hollow spheres (ping-pong balls) that rest on a horizontal metallic grid. Fluidization is achieved by means of a turbulent air current coming from below. The upflow is adjusted so that the particles do not levitate over the grid, resulting in quasi-two-dimensional dynamics. We show that the behavior of diffusion and correlations in this system is particularly rich. Noticeably as well (and related to the complex dynamical behavior), a variety of phases appear, with important peculiarities with respect to analogous setups. We observe gas, liquid, glass, and hexagonal crystal phases. Most notably, we show that the melting of the hexagonal crystal occurs in coexistence with a liquid phase. This strikingly differs from the corresponding transition in a purely two-dimensional systems of air-fluidized disks, for which no phase coexistence has been reported in the literature.