Do you want to publish a course? Click here

Exact phase space matching for staging plasma and traditional accelerator components using longitudinally tailored plasma profiles

279   0   0.0 ( 0 )
 Added by Xinlu Xu
 Publication date 2014
  fields Physics
and research's language is English
 Authors X. L. Xu




Ask ChatGPT about the research

Phase space matching between two plasma-accelerator (PA) stages and between a PA and a traditional accelerator component is a critical issue for emittance preservation of beams accelerated by PAs. The drastic differences of the transverse focusing strengths as the beam propagates between different stages and components may lead to a catastrophic emittance growth in the presence of both finite energy spread and lack of proper matching. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to provide exact phase space matching to properly transport the electron beam through two such stages with negligible emittance growth. Theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained.



rate research

Read More

285 - X. L. Xu , F. Li , W. An 2016
The generation of very high quality electron bunches (high brightness and low energy spread) from a plasma-based accelerator in the three-dimensional blowout regime using self-injection in tailored plasma density profiles is analyzed theoretically and with particle-in-cell simulations. The underlying physical mechanism that leads to the generation of high quality electrons is uncovered by tracking the trajectories of the electrons as they cross the sheath and are trapped by the wake. Details on how the intensity of the driver and the density scale-length of the plasma control the ultimate beam quality are described. Three-dimensional particle-in-cell simulations indicate that this concept has the potential to produce beams with peak brightnesses between $10^{20}$ and $10^{21}$ $mathrm{A}/mathrm{m}^2/mathrm{rad}^2$and with absolute projected energy spreads of $sim 0.3~mathrm{MeV}$ using existing lasers or electron beams to drive nonlinear wakefields.
Laser plasma acceleration at kilohertz repetition rate has recently been shown to work in two different regimes, with pulse lengths of either 30 fs or 3.5 fs. We now report on a systematic study in which a large range of pulse durations and plasma densities were investigated through continuous tuning of the laser spectral bandwidth. Indeed, two LPA processes can be distinguished, where beams of the highest quality, with 5.4 pC charge and a spectrum peaked at 2-2.5 MeV are obtained with short pulses propagating in moderate plasma densities. Through Particle-in-Cell simulations the two different acceleration processes are thoroughly explained. Finally, we proceed to show the results of a 5-hour continuous and stable run of our LPA accelerator accumulating more than $mathrm{18times10^6}$ consecutive shots, with 2.6 pC charge and peaked 2.5 MeV spectrum. A parametric study of the influence of the laser driver energy through PIC simulations underlines that this unprecedented stability was obtained thanks to micro-scale density gradient injection. Together, these results represent an important step towards stable laser-plasma accelerated electron beams at kilohertz repetition rate.
The FLASHForward experimental facility is a high-performance test-bed for precision plasma-wakefield research, aiming to accelerate high-quality electron beams to GeV-levels in a few centimetres of ionised gas. The plasma is created by ionising gas in a gas cell either by a high-voltage discharge or a high-intensity laser pulse. The electrons to be accelerated will either be injected internally from the plasma background or externally from the FLASH superconducting RF front end. In both cases the wakefield will be driven by electron beams provided by the FLASH gun and linac modules operating with a 10 Hz macro-pulse structure, generating 1.25 GeV, 1 nC electron bunches at up to 3 MHz micro-pulse repetition rates. At full capacity, this FLASH bunch-train structure corresponds to 30 kW of average power, orders of magnitude higher than drivers available to other state-of-the-art LWFA and PWFA experiments. This high-power functionality means FLASHForward is the only plasma-wakefield facility in the world with the immediate capability to develop, explore, and benchmark high-average-power plasma-wakefield research essential for next-generation facilities. The operational parameters and technical highlights of the experiment are discussed, as well as the scientific goals and high-average-power outlook.
118 - Y. P. Wu , J. F. Hua , Z. Zhou 2019
Plasma-based accelerators have made impressive progress in recent years. However, the beam energy spread obtained in these accelerators is still at ~ 1 % level, nearly one order of magnitude larger than what is needed for challenging applications like coherent light sources or colliders. In plasma accelerators, the beam energy spread is mainly dominated by its energy chirp (longitudinally correlated energy spread). Here we demonstrate that when an initially chirped electron beam from a linac with a proper current profile is sent through a low-density plasma structure, the self wake of the beam can significantly reduce its energy chirp and the overall energy spread. The resolution-limited energy spectrum measurements show at least a threefold reduction of the beam energy spread from 1.28 % to 0.41 % FWHM with a dechirping strength of ~ 1 (MV/m)/(mm pC). Refined time-resolved phase space measurements, combined with high-fidelity three-dimensional particle-in-cell simulations, further indicate the real energy spread after the dechirper is only about 0.13 % (FWHM), a factor of 10 reduction of the initial energy spread.
208 - X. L. Xu 2013
The evolution of beam phase space in ionization-induced injection into plasma wakefields is studied using theory and particle-in-cell (PIC) simulations. The injection process causes special longitudinal and transverse phase mixing leading initially to a rapid emittance growth followed by oscillation, decay, and eventual slow growth to saturation. An analytic theory for this evolution is presented that includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces. Formulas for the emittance in the low and high space charge regimes are presented. The theory is verified through PIC simulations and a good agreement is obtained. This work shows how ultra-low emittance beams can be produced using ionization-induced injection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا