Do you want to publish a course? Click here

Observability of the scalar Aharonov-Bohm effect inside a 3D Faraday cage with time-varying exterior charges and masses

127   0   0.0 ( 0 )
 Added by Xiuhao Deng
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we investigate the scalar Aharonov-Bohm (AB) effect in two of its forms, i.e., its electric form and its gravitational form. The standard form of the electric AB effect involves having particles (such as electrons) move in regions with zero electric field but different electric potentials. When a particle is recombined with itself, it will have a different phase, which can show up as a change in the way the single particle interferes with itself when it is recombined with itself. In the case where one has quasi-static fields and potentials, the particle will invariably encounter fringing fields, which makes the theoretical and experimental status of the electric AB effect much less clear than that of the magnetic (or vector) AB effect. Here we propose using time varying fields outside of a spherical shell, and potentials inside a spherical shell to experimentally test the scalar AB effect. In our proposal a quantum system will always be in a field-free region but subjected to a non-zero time-varying potentials. Furthermore, our system will not be spatially split and brought back together as in the magnetic AB experiment. Therefore there is no spatial interference and hence no shift in a spatial interference pattern to observe. Rather, there arises purely temporal interference phenomena. As in the magnetic AB experiments, these effects are non-classical. We present t



rate research

Read More

We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint representation of $SU(N)$ generators, vanishes up to the first order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not appear in the time-dependent Abelian or non-Abelian AB effect.
We propose a feasible laboratory interferometry experiment with matter waves in a gravitational potential caused by a pair of artificial field-generating masses. It will demonstrate that the presence of these masses (and, for moving atoms, time dilation) induces a phase shift, even if it does not cause any classical force. The phase shift is identical to that produced by the gravitational redshift (or time dilation) of clocks ticking at the atoms Compton frequency. In analogy to the Aharonov-Bohm effect in electromagnetism, the quantum mechanical phase is a function of the gravitational potential and not the classical forces.
In this work we consider a quantum variation of the usual Aharonov-Bohm effect with two solenoids sufficiently close one to the other so that (external) electron cannot propagate between two solenoids but only around both solenoids. Here magnetic field (or classical vector potential of the electromagnetic field) acting at quantum propagating (external) electron represents the quantum mechanical average value or statistical mixture. It is obtained by wave function of single (internal, quantum propagating within some solenoid wire) electron (or homogeneous ensemble of such (internal) electrons) representing a quantum superposition with two practically non-interfering terms. All this implies that phase difference and interference shape translation of the quantum propagating (external) electron represent the quantum mechanical average value or statistical mixture. On the other hand we consider a classical analogy and variation of the usual Aharonov-Bohm effect in which Aharonov-Bohm solenoid is used for the primary coil inside secondary large coil in the remarkable classical Faraday experiment of the electromagnetic induction.
The Aharanov-Bohm (AB) effect, which predicts that a magnetic field strongly influences the wave function of an electrically charged particle, is investigated in a three site system in terms of the quantum control by an additional dephasing source. The AB effect leads to a non-monotonic dependence of the steady-state current on the gauge phase associated with the molecular ring. This dependence is sensitive to site energy, temperature, and dephasing, and can be explained using the concept of the dark state. Although the phase effect vanishes in the steady-state current for strong dephasing, the phase dependence remains visible in an associated waiting-time distribution, especially at short times. Interestingly, the phase rigidity (i.e., the symmetry of the AB phase) observed in the steady-state current is now broken in the waiting-time statistics, which can be explained by the interference between transfer pathways.
66 - de-Hone Lin 2003
Partial wave theory of a two dimensional scattering problem for an arbitray short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a ``hard disk like potential and the magnetic flux is examined. Since the nonlocal influence of magnetic flux on the charged particles is universal, the nonlocal effect in hard disk case is expected to appear in quite general potential system and will be useful in understanding some phenomena in mesoscopic phyiscs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا