No Arabic abstract
The communication complexity of many fundamental problems reduces greatly when the communicating parties share randomness that is independent of the inputs to the communication task. Natural communication processes (say between humans) however often involve large amounts of shared correlations among the communicating players, but rarely allow for perfect sharing of randomness. Can the communication complexity benefit from shared correlations as well as it does from shared randomness? This question was considered mainly in the context of simultaneous communication by Bavarian et al. (ICALP 2014). In this work we study this problem in the standard interactive setting and give some general results. In particular, we show that every problem with communication complexity of $k$ bits with perfectly shared randomness has a protocol using imperfectly shared randomness with complexity $exp(k)$ bits. We also show that this is best possible by exhibiting a promise problem with complexity $k$ bits with perfectly shared randomness which requires $exp(k)$ bits when the randomness is imperfectly shared. Along the way we also highlight some other basic problems such as compression, and agreement distillation, where shared randomness plays a central role and analyze the complexity of these problems in the imperfectly shared randomness model. The technical highlight of this work is the lower bound that goes into the result showing the tightness of our general connection. This result builds on the intuition that communication with imperfectly shared randomness needs to be less sensitive to its random inputs than communication with perfectly shared randomness. The formal proof invokes results about the small-set expansion of the noisy hypercube and an invariance principle to convert this intuition to a proof, thus giving a new application domain for these fundamental results.
Two parties wish to carry out certain distributed computational tasks, and they are given access to a source of correlated random bits. It allows the parties to act in a correlated manner, which can be quite useful. But what happens if the shared randomness is not perfect? In this work, we initiate the study of the power of different sources of shared randomness in communication complexity. This is done in the setting of simultaneous message passing (SMP) model of communication complexity, which is one of the most suitable models for studying the resource of shared randomness. Toward characterising the power of various sources of shared randomness, we introduce a measure for the quality of a source - we call it collision complexity. Our results show that the collision complexity tightly characterises the power of a (shared) randomness resource in the SMP model. Of independent interest is our demonstration that even the weakest sources of shared randomness can in some cases increase the power of SMP substantially: the equality function can be solved very efficiently with virtually any nontrivial shared randomness.
A Santha-Vazirani (SV) source is a sequence of random bits where the conditional distribution of each bit, given the previous bits, can be partially controlled by an adversary. Santha and Vazirani show that deterministic randomness extraction from these sources is impossible. In this paper, we study the generalization of SV sources for non-binary sequences. We show that unlike the binary case, deterministic randomness extraction in the generalized case is sometimes possible. We present a necessary condition and a sufficient condition for the possibility of deterministic randomness extraction. These two conditions coincide in non-degenerate cases. Next, we turn to a distributed setting. In this setting the SV source consists of a random sequence of pairs $(a_1, b_1), (a_2, b_2), ldots$ distributed between two parties, where the first party receives $a_i$s and the second one receives $b_i$s. The goal of the two parties is to extract common randomness without communication. Using the notion of maximal correlation, we prove a necessary condition and a sufficient condition for the possibility of common randomness extraction from these sources. Based on these two conditions, the problem of common randomness extraction essentially reduces to the problem of randomness extraction from (non-distributed) SV sources. This result generalizes results of Gacs and Korner, and Witsenhausen about common randomness extraction from i.i.d. sources to adversarial sources.
Information-theoretic methods have proven to be a very powerful tool in communication complexity, in particular giving an elegant proof of the linear lower bound for the two-party disjointness function, and tight lower bounds on disjointness in the multi-party number-in-the-hand (NIH) model. In this paper, we study the applicability of information theoretic methods to the multi-party number-on-the-forehead model (NOF), where determining the complexity of disjointness remains an important open problem. There are two basic parts to the NIH disjointness lower bound: a direct sum theorem and a lower bound on the one-bit AND function using a beautiful connection between Hellinger distance and protocols revealed by Bar-Yossef, Jayram, Kumar and Sivakumar [BYJKS04]. Inspired by this connection, we introduce the notion of Hellinger volume. We show that it lower bounds the information cost of multi-party NOF protocols and provide a small toolbox that allows one to manipulate several Hellinger volume terms and lower bound a Hellinger volume when the distributions involved satisfy certain conditions. In doing so, we prove a new upper bound on the difference between the arithmetic mean and the geometric mean in terms of relative entropy. We then apply these new tools to obtain a lower bound on the informational complexity of the AND_k function in the NOF setting. Finally, we discuss the difficulties of proving a direct sum theorem for information cost in the NOF model.
Steganographic protocols enable one to embed covert messages into inconspicuous data over a public communication channel in such a way that no one, aside from the sender and the intended receiver, can even detect the presence of the secret message. In this paper, we provide a new provably-secure, private-key steganographic encryption protocol secure in the framework of Hopper et al. We first present a one-time stegosystem that allows two parties to transmit messages of length at most that of the shared key with information-theoretic security guarantees. The employment of a pseudorandom generator (PRG) permits secure transmission of longer messages in the same way that such a generator allows the use of one-time pad encryption for messages longer than the key in symmetric encryption. The advantage of our construction, compared to all previous work is randomness efficiency: in the information theoretic setting our protocol embeds a message of length n bits using a shared secret key of length (1+o(1))n bits while achieving security 2^{-n/log^{O(1)}n}; simply put this gives a rate of key over message that is 1 as n tends to infinity (the previous best result achieved a constant rate greater than 1 regardless of the security offered). In this sense, our protocol is the first truly randomness efficient steganographic system. Furthermore, in our protocol, we can permit a portion of the shared secret key to be public while retaining precisely n private key bits. In this setting, by separating the public and the private randomness of the shared key, we achieve security of 2^{-n}. Our result comes as an effect of the application of randomness extractors to stegosystem design. To the best of our knowledge this is the first time extractors have been applied in steganography.
We present a general theory of entanglement-assisted quantum convolutional coding. The codes have a convolutional or memory structure, they assume that the sender and receiver share noiseless entanglement prior to quantum communication, and they are not restricted to possess the Calderbank-Shor-Steane structure as in previous work. We provide two significant advances for quantum convolutional coding theory. We first show how to expand a given set of quantum convolutional generators. This expansion step acts as a preprocessor for a polynomial symplectic Gram-Schmidt orthogonalization procedure that simplifies the commutation relations of the expanded generators to be the same as those of entangled Bell states (ebits) and ancilla qubits. The above two steps produce a set of generators with equivalent error-correcting properties to those of the original generators. We then demonstrate how to perform online encoding and decoding for a stream of information qubits, halves of ebits, and ancilla qubits. The upshot of our theory is that the quantum code designer can engineer quantum convolutional codes with desirable error-correcting properties without having to worry about the commutation relations of these generators.