Do you want to publish a course? Click here

Embedding calculus knot invariants are of finite type

423   0   0.0 ( 0 )
 Added by Robin Koytcheff
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We show that the map on components from the space of classical long knots to the n-th stage of its Goodwillie-Weiss embedding calculus tower is a map of monoids whose target is an abelian group and which is invariant under clasper surgery. We deduce that this map on components is a finite type-(n-1) knot invariant. We also compute the second page in total degree zero for the spectral sequence converging to the components of this tower as Z-modules of primitive chord diagrams, providing evidence for the conjecture that the tower is a universal finite-type invariant over the integers. Key to these results is the development of a group structure on the tower compatible with connect-sum of knots, which in contrast with the corresponding results for the (weaker) homology tower requires novel techniques involving operad actions, evaluation maps, and cosimplicial and subcubical diagrams.



rate research

Read More

We study configuration space integral formulas for Milnors homotopy link invariants, showing that they are in correspondence with certain linear combinations of trivalent trees. Our proof is essentially a combinatorial analysis of a certain space of trivalent homotopy link diagrams which corresponds to all finite type homotopy link invariants via configuration space integrals. An important ingredient is the fact that configuration space integrals take the shuffle product of diagrams to the product of invariants. We ultimately deduce a partial recipe for writing explicit integral formulas for products of Milnor invariants from trivalent forests. We also obtain cohomology classes in spaces of link maps from the same data.
Bredon has constructed a 2-dimensional compact cohomology manifold which is not homologically locally connected, with respect to the singular homology. In the present paper we construct infinitely many such examples (which are in addition metrizable spaces) in all remaining dimensions $n ge 3$.
We show that every knot can be realized as a billiard trajectory in a convex prism. This solves a conjecture of Jones and Przytycki.
We extend the theory of Vassiliev (or finite type) invariants for knots to knotoids using two different approaches. Firstly, we take closures on knotoids to obtain knots and we use the Vassiliev invariants for knots, proving that these are knotoid isotopy invariant. Secondly, we define finite type invariants directly on knotoids, by extending knotoid invariants to singular knotoid invariants via the Vassiliev skein relation. Then, for spherical knotoids we show that there are non-trivial type-1 invariants, in contrast with classical knot theory where type-1 invariants vanish. We give a complete theory of type-1 invariants for spherical knotoids, by classifying linear chord diagrams of order one, and we present examples arising from the affine index polynomial and the extended bracket polynomial.
We define the Bianchi-Massey tensor of a topological space X to be a linear map from a subquotient of the fourth tensor power of H*(X). We then prove that if M is a closed (n-1)-connected manifold of dimension at most 5n-3 (and n > 1) then its rational homotopy type is determined by its cohomology algebra and Bianchi-Massey tensor, and that M is formal if and only if the Bianchi-Massey tensor vanishes. We use the Bianchi-Massey tensor to show that there are many (n-1)-connected (4n-1)-manifolds that are not formal but have no non-zero Massey products, and to present a classification of simply-connected 7-manifolds up to finite ambiguity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا