Bredon has constructed a 2-dimensional compact cohomology manifold which is not homologically locally connected, with respect to the singular homology. In the present paper we construct infinitely many such examples (which are in addition metrizable spaces) in all remaining dimensions $n ge 3$.
We show that the classical example $X$ of a 3-dimensional generalized manifold constructed by van Kampen is another example of not homologically locally connected (i.e. not HLC) space. This space $X$ is not locally homeomorphic to any of the compact metrizable 3-dimensional manifolds constructed in our earlier paper which are not HLC spaces either.
We provide some properties and characterizations of homologically $UV^n$-maps and $lc^n_G$-spaces. We show that there is a parallel between recently introduced by Cauty algebraic $ANR$s and homologically $lc^n_G$-metric spaces, and this parallel is similar to the parallel between ordinary $ANR$s and $LC^n$-metric spaces. We also show that there is a similarity between the properties of $LC^n$-spaces and $lc^n_G$-spaces. Some open questions are raised.
Building on work of Stolz, we prove for integers $0 le d le 3$ and $k>232$ that the boundaries of $(k-1)$-connected, almost closed $(2k+d)$-manifolds also bound parallelizable manifolds. Away from finitely many dimensions, this settles longstanding questions of C.T.C. Wall, determines all Stein fillable homotopy spheres, and proves a conjecture of Galatius and Randal-Williams. Implications are drawn for both the classification of highly connected manifolds and, via work of Kreck and Krannich, the calculation of their mapping class groups. Our technique is to recast the Galatius and Randal-Williams conjecture in terms of the vanishing of a certain Toda bracket, and then to analyze this Toda bracket by bounding its $mathrm{H}mathbb{F}_p$-Adams filtrations for all primes $p$. We additionally prove new vanishing lines in the $mathrm{H}mathbb{F}_p$-Adams spectral sequences of spheres and Moore spectra, which are likely to be of independent interest. Several of these vanishing lines rely on an Appendix by Robert Burklund, which answers a question of Mathew about vanishing curves in $mathrm{BP} langle n rangle$-based Adams spectral sequences.
We define the Bianchi-Massey tensor of a topological space X to be a linear map from a subquotient of the fourth tensor power of H*(X). We then prove that if M is a closed (n-1)-connected manifold of dimension at most 5n-3 (and n > 1) then its rational homotopy type is determined by its cohomology algebra and Bianchi-Massey tensor, and that M is formal if and only if the Bianchi-Massey tensor vanishes. We use the Bianchi-Massey tensor to show that there are many (n-1)-connected (4n-1)-manifolds that are not formal but have no non-zero Massey products, and to present a classification of simply-connected 7-manifolds up to finite ambiguity.
Let $M$ be a closed simply connected smooth manifold. Let $F_p$ be the finite field with $p$ elements where $p> 0$ is a prime integer. Suppose that $M$ is an $F_p$-elliptic space in the sense of [FHT91]. We prove that if the cohomology algebra $H^*(M, F_p)$ cannot be generated (as an algebra) by one element, then any Riemannian metric on $M$ has an infinite number of geometrically distinct closed geodesics. The starting point is a classical theorem of Gromoll and Meyer [GM69]. The proof uses string homology, in particular the spectral sequence of [CJY04], the main theorem of [McC87], and the structure theorem for elliptic Hopf algebras over $F_p$ from [FHT91].
Umed H. Karimov
,Duv{s}an Repovv{s}
.
(2008)
.
"Examples of cohomology manifolds which are not homologically locally connected"
.
Du\\v{s}an Repov\\v{s}
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا