We present a general frame to extend functional renormalization group (fRG) based computational schemes by using an exactly solvable interacting reference problem as starting point for the RG flow. The systematic expansion around this solution accounts for a non-perturbative inclusion of correlations. Introducing auxiliary fermionic fields by means of a Hubbard-Stratonovich transformation, we derive the flow equations for the auxiliary fields and determine the relation to the conventional weak-coupling truncation of the hierarchy of flow equations. As a specific example we consider the dynamical mean-field theory (DMFT) solution as reference system, and discuss the relation to the recently introduced DMF$^2$RG and the dual-fermion formalism.
Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description. For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium.
We explore the possibilities of using the fermionic functional renormalization group to compute the phase diagram of systems with competing instabilities. In order to overcome the ubiquituous divergences encountered in RG flows, we propose to use symmetry breaking counterterms for each instability, and employ a self-consistency condition for fixing the counterterms. As a validity check, results are compared to known exact results for the case of one-dimensional systems. We find that whilst one-dimensional peculiarities, in particular algebraically decaying correlation functions, can not be reproduced, the phase boundaries are reproduced accurately, encouraging further explorations for higher-dimensional systems.
In the field of quantum magnetism, the advent of numerous spin-orbit assisted Mott insulating compounds, such as the family of Kitaev materials, has led to a growing interest in studying general spin models with non-diagonal interactions that do not retain the SU(2) invariance of the underlying spin degrees of freedom. However, the exchange frustration arising from these non-diagonal and often bond-directional interactions for two- and three-dimensional lattice geometries poses a serious challenge for numerical many-body simulation techniques. In this paper, we present an extended formulation of the pseudo-fermion functional renormalization group that is capable of capturing the physics of frustrated quantum magnets with generic (diagonal and off-diagonal) two-spin interaction terms. Based on a careful symmetry analysis of the underlying flow equations, we reveal that the computational complexity grows only moderately, as compared to models with only diagonal interaction terms. We apply the formalism to a kagome antiferromagnet which is augmented by general in-plane and out-of-plane Dzyaloshinskii-Moriya (DM) interactions, as argued to be present in the spin liquid candidate material herbertsmithite. We calculate the complete ground state phase diagram in the strength of in-plane and out-of-plane DM couplings, and discuss the extended stability of the spin liquid of the unperturbed kagome antiferromagnet in the presence of these couplings.
Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the $varphi^4$ theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.
We present a functional renormalization group analysis of superconductivity in the ground state of the attractive Hubbard model on a square lattice. Spontaneous symmetry breaking is treated in a purely fermionic setting via anomalous propagators and anomalous effective interactions. In addition to the anomalous interactions arising already in the reduced BCS model, effective interactions with three incoming legs and one outgoing leg (and vice versa) occur. We accomplish their integration into the usual diagrammatic formalism by introducing a Nambu matrix for the effective interactions. From a random-phase approximation generalized through use of this matrix we conclude that the impact of the 3+1 effective interactions is limited, especially considering the effective interactions important for the determination of the order parameter. The exact hierarchy of flow equations for one-particle irreducible vertex functions is truncated on the two-particle level, with higher-order self-energy corrections included in a scheme proposed by Katanin. Using a parametrization of effective interactions by patches in momentum space, the flow equations can be integrated numerically to the lowest scales without encountering divergences. Momentum-shell as well as interaction-flow cutoff functions are used, including a small external field or a large external field and a counterterm, respectively. Both approaches produce momentum-resolved order parameter values directly from the microscopic model. The size of the superconducting gap is in reasonable agreement with expectations from other studies.