Do you want to publish a course? Click here

Superconductivity in the attractive Hubbard model: functional renormalization group analysis

171   0   0.0 ( 0 )
 Added by Carsten Honerkamp
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a functional renormalization group analysis of superconductivity in the ground state of the attractive Hubbard model on a square lattice. Spontaneous symmetry breaking is treated in a purely fermionic setting via anomalous propagators and anomalous effective interactions. In addition to the anomalous interactions arising already in the reduced BCS model, effective interactions with three incoming legs and one outgoing leg (and vice versa) occur. We accomplish their integration into the usual diagrammatic formalism by introducing a Nambu matrix for the effective interactions. From a random-phase approximation generalized through use of this matrix we conclude that the impact of the 3+1 effective interactions is limited, especially considering the effective interactions important for the determination of the order parameter. The exact hierarchy of flow equations for one-particle irreducible vertex functions is truncated on the two-particle level, with higher-order self-energy corrections included in a scheme proposed by Katanin. Using a parametrization of effective interactions by patches in momentum space, the flow equations can be integrated numerically to the lowest scales without encountering divergences. Momentum-shell as well as interaction-flow cutoff functions are used, including a small external field or a large external field and a counterterm, respectively. Both approaches produce momentum-resolved order parameter values directly from the microscopic model. The size of the superconducting gap is in reasonable agreement with expectations from other studies.



rate research

Read More

80 - Steve Allen 2000
In this thesis, I present a non-perturbative approach to the single-band attractive Hubard model which is an extension of previous work by Vilk and Tremblay on the repulsive model. Exact results are derived in the general context of functional derivative approaches to many-body theories. The first step of the approximation is based on a local field type ansatz. All physical quantities can be expressed as a function of double-occupancy (in addition to temperature and filling). Double-occupancy is determined without adjustable parameter by imposing the Pauli principle and a crucial sum-rule, making the first step of the approximation Two-Particle Self-Consistent. The final expression for the self-energy is obtained by calculating the low-frequency part of the exact expression with the two-particle correlation, Green function and renormalized vertex obtained in the first step of the approximation. The Mermin-Wagner theorem in two dimensions is automatically satisfied. Application of this non-perturbative many-body approach to the intermediate coupling regime shows quantitative agreement with quantum Monte Carlo calculations. Both approaches predict the existence of a pseudogap in the single-particle spectral weight. I present some physical properties, such as correlation lengths, superfluid density, and characteristic pair fluctuation energy, to highlight the origin of the pseudogap in the weak to intermediate coupling regime. These results suggest that two-dimensional systems that are described by a symmetry group larger than SO(2) could have a larger region of pseudogap behavior. High-temperature superconductors may belong to that category of systems.
The channel-decomposed functional renormalization group (FRG) approach, most recently in the variant of truncated-unity-(TU-)FRG, has so far been used for various two-dimensional model systems. Yet, for many interesting material systems the third spatial dimension is of clear relevance. Therefore FRG schemes working in three spatial dimensions (3D) are definitely on the wishlist. Here we demonstrate that a 3D TUFRG scheme can be set up in straightforward extension of previous 2D codes and gives physically sensible results with affordable numerical effort, both regarding the qualitative as well as the quantitative description. The computed phase diagram of the three-dimensional Hubbard model at half filling or perfect nesting shows a phase transition to a ((pi,pi,pi))-ordered antiferromagnetic ground state for repulsive interactions at an energy scale that compares well with other numerical approaches in the literature. Furthermore, the method allowed us to detect a (d)-wave pairing and a concurring ((pi,pi,0)) antiferromagnetic ground state in the hole doped Hubbard model.
Using the recently introduced multiloop extension of the functional renormalization group, we compute the frequency- and momentum-dependent self-energy of the two-dimensional Hubbard model at half filling and weak coupling. We show that, in the truncated-unity approach for the vertex, it is essential to adopt the Schwinger-Dyson form of the self-energy flow equation in order to capture the pseudogap opening. We provide an analytic understanding of the key role played by the flow scheme in correctly accounting for the impact of the antiferromagnetic fluctuations. For the resulting pseudogap, we present a detailed numerical analysis of its evolution with temperature, interaction strength, and loop order.
Recently, complex phase transitions accompanied by the rotational symmetry breaking have been discovered experimentally in cuprate superconductors. To find the realized order parameters, we study various charge susceptibilities in an unbiased way, by applying the functional-renormalization-group method to the realistic $d$-$p$ Hubbard model. Without assuming the wavevector of the order parameter, we reveal that the most dominant instability is the uniform ($q = 0$) charge modulation on the $p_x$ and $p_y$ orbitals, which possesses the d-symmetry. This uniform nematic order triggers another nematic p-orbital density wave along the axial (Cu-Cu) direction at $Q_a = (pi/2,0)$. It is predicted that uniform nematic order is driven by the spin fluctuations in the pseudogap region, and another nematic density-wave order at $q = Q_a$ is triggered by the uniform order. The predicted multistage nematic transitions are caused by the Aslamazov-Larkin-type fluctuation-exchange processes.
The two-dimensional attractive Hubbard model is studied in the weak to intermediate coupling regime by employing a non-perturbative approach. It is first shown that this approach is in quantitative agreement with Monte Carlo calculations for both single-particle and two-particle quantities. Both the density of states and the single-particle spectral weight show a pseudogap at the Fermi energy below some characteristic temperature T*, also in good agreement with quantum Monte Carlo calculations. The pseudogap is caused by critical pairing fluctuations in the low-temperature renormalized classical regime $omega < T$ of the two-dimensional system. With increasing temperature the spectral weight fills in the pseudogap instead of closing it and the pseudogap appears earlier in the density of states than in the spectral function. Small temperature changes around T* can modify the spectral weight over frequency scales much larger than temperature. Several qualitative results for the s-wave case should remain true for d-wave superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا