Do you want to publish a course? Click here

Non-destructive selective probing of phononic excitations in a cold Bose gas using impurities

94   0   0.0 ( 0 )
 Added by Dominik Hangleiter
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a detector that selectively probes the phononic excitations of a cold Bose gas. The detector is composed of a single impurity atom confined by a double-well potential, where the two lowest eigenstates of the impurity form an effective probe qubit that is coupled to the phonons via density-density interactions with the bosons. The system is analogous to a two-level atom coupled to photons of the radiation field. We demonstrate that tracking the evolution of the qubit populations allows probing both thermal and coherent excitations in targeted phonon modes. The targeted modes are selected in both energy and momentum by adjusting the impuritys potential. We show how to use the detector to observe coherent density waves and to measure temperatures of the Bose gas down to the nano-Kelvin regime. We analyze how our scheme could be realized experimentally, including the possibility of using an array of multiple impurities to achieve greater precision from a single experimental run.



rate research

Read More

580 - J. Catani , G. Lamporesi , D. Naik 2011
Using a species-selective dipole potential, we create initially localized impurities and investigate their interactions with a majority species of bosonic atoms in a one-dimensional configuration during expansion. We find an interaction-dependent amplitude reduction of the oscillation of the impurities size with no measurable frequency shift, and study it as a function of the interaction strength. We discuss possible theoretical interpretations of the data. We compare, in particular, with a polaronic mass shift model derived following Feynman variational approach.
We have measured the effect of dipole-dipole interactions on the frequency of a collective mode of a Bose-Einstein condensate. At relatively large numbers of atoms, the experimental measurements are in good agreement with zero temperature theoretical predictions based on the Thomas Fermi approach. Experimental results obtained for the dipolar shift of a collective mode show a larger dependency to both the trap geometry and the atom number than the ones obtained when measuring the modification of the condensate aspect ratio due to dipolar forces. These findings are in good agreement with simulations based on a gaussian ansatz.
Significant experimental progress has been made recently for observing long-sought supersolid-like states in Bose-Einstein condensates, where spatial translational symmetry is spontaneously broken by anisotropic interactions to form a stripe order. Meanwhile, the superfluid stripe ground state was also observed by applying a weak optical lattice that forces the symmetry breaking. Despite of the similarity of the ground states, here we show that these two symmetry breaking mechanisms can be distinguished by their collective excitation spectra. In contrast to gapless Goldstone modes of the textit{spontaneous} stripe state, we propose that the excitation spectra of the textit{forced} stripe phase can provide direct experimental evidence for the long-sought gapped pseudo-Goldstone modes. We characterize the pseudo-Goldstone mode of such lattice-induced stripe phase through its excitation spectrum and static structure factor. Our work may pave the way for exploring spontaneous and forced/approximate symmetry breaking mechanisms in different physical systems.
The problem of how complex quantum systems eventually come to rest lies at the heart of statistical mechanics. The maximum entropy principle put forward in 1957 by E. T. Jaynes suggests what quantum states one should expect in equilibrium but does not hint as to how closed quantum many-body systems dynamically equilibrate. A number of theoretical and numerical studies accumulate evidence that under specific conditions quantum many-body models can relax to a situation that locally or with respect to certain observables appears as if the entire system had relaxed to a maximum entropy state. In this work, we report the experimental observation of the non-equilibrium dynamics of a density wave of ultracold bosonic atoms in an optical lattice in the regime of strong correlations. Using an optical superlattice, we are able to prepare the system in a well-known initial state with high fidelity. We then follow the dynamical evolution of the system in terms of quasi-local densities, currents, and coherences. Numerical studies based on the time-dependent density-matrix renormalization group method are in an excellent quantitative agreement with the experimental data. For very long times, all three local observables show a fast relaxation to equilibrium values compatible with those expected for a global maximum entropy state. We find this relaxation of the quasi-local densities and currents to initially follow a power-law with an exponent being significantly larger than for free or hardcore bosons. For intermediate times the system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics runs for longer times than present classical algorithms based on matrix product states can efficiently keep track of.
We consider a Bose-Einstein Condensate(BEC) with non-local inter-particle interactions. The local Gross-Pitaevskii(GP) equation is valid for the gas parameter $ u =: a^{3} n_{0} << 1$, but for $ u rightarrow 1$, the BEC is described by modified GP equation(MGPE). We study the exact solutions of the MGPE describing bright and dark solitons. It turns out that the width of these non-local solitons has qualitatively similar behaviour as the modified healing length due to the non-local interactions of the MGPE. We also study the effect of the non-locality and gas parameter({ u}) on the stability of the solitons using the Vakhitov Kolokolov(VK) stability criterion. We show that these soliton solutions are indeed stable. Further, the stability of these soliton solutions gets enhanced due to the non-locality of interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا